
BASIC JAVA



Today

• We will kick off by getting you in a position to write some simple
Java programs.

• Then we’ll go next door and you’ll write some.

• We’ll start by looking at some of the things youcan do with Java.

• Then we’ll stress some of the differences with C/C++.

cisc3120-fall2012-parsons-lectI.1b 2



• Lots of this material is drawn from Java in a Nutshell, David
Flanagan, O’Reilly . . .

cisc3120-fall2012-parsons-lectI.1b 3



• Other material is drawn from Learning Java, Patrick Niemeyer,
Jonathan Knudsen, O’Reilly.

cisc3120-fall2012-parsons-lectI.1b 4



• Java was developed in the early 1990s (released 1995) by Sun
Microsystems.

• Sun is the second most famous spinoff from Stanford University.

cisc3120-fall2012-parsons-lectI.1b 5



• Originally developed for interactive TV, but couldn’t run on the
simple hardware at the time.

• Now runs on an estimated 3 billion mobile phones.

cisc3120-fall2012-parsons-lectI.1b 6



• In January 2010, Sun (and hence Java) was aquired by Oracle.

cisc3120-fall2012-parsons-lectI.1b 7



Hello world

• Here is the standard “hello world” program written in Java:

public class HelloWorld{
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

• The next slide shows how it looks in Eclipse, the IDE that we’ll
be using in this course.

cisc3120-fall2012-parsons-lectI.1b 8



cisc3120-fall2012-parsons-lectI.1b 9



• And now, let’s look at the IDE in action

cisc3120-fall2012-parsons-lectI.1b 10



Interpretation

• One of the key advantages of Java is that it is an interpreted
language.

– Compiled code runs on a virtual machine that runs on the
computer hardware.

• This abstracts away the detail of the hardware.

– Leads to highly portable programs.
– “Write Once, Run Anywhere”
– Leads to some differences with C and C++

• The compiler generates byte code that the virtual machine
executes.

cisc3120-fall2012-parsons-lectI.1b 11



Program structure
• A Java program consists of one or more class definitions.

– Java is a pure object-oriented language.
– It is not possible to write programs without objects.

(You can, of course, write a program that is one great big
object, not recommended).

• In our “hello world” program, there is one class:

– HelloWorld.

• Somewhere in one of the classes there must be exactly one main
method/function.

– Here it is (naturally) in HelloWorld.
– Later we’ll see examples with more than one class — they still

have just one main.

cisc3120-fall2012-parsons-lectI.1b 12



• Java classes are contained in files called <something>.java.

• The convention that Eclipse enforces is that each class must be in
a file that has the same name as the class.

– In other words, our class HelloWorld has to be in a file
called HelloWorld.java

• When the compiler is run on this file, it creates the byte code file
<something>.class.

– In other words, when our class HelloWorld is complied, the
byte code file is called HelloWorld.class

cisc3120-fall2012-parsons-lectI.1b 13



Why Java?

• Java makes a number of things very easy to do.

– The language itself is small and simple.
– However, there is a very large set of libraries.

• As an example, consider the program HelloSwing.

– This uses the swing library to prints the Hello World text
in a separate window.

– Java calls this window a frame.

• The output is on the next slide.

cisc3120-fall2012-parsons-lectI.1b 14



cisc3120-fall2012-parsons-lectI.1b 15



• HelloSwing is a simple example of a graphical user interface
(GUI)

– a very simple example :-)

• Java also makes it easy to generate applets

– Programs that run in a web browser

• Graphics and networking are also straightforward, because of all
those helpful libraries,

• That is why we use it for this course.

cisc3120-fall2012-parsons-lectI.1b 16



Dissecting HelloSwing

• Now, what do the various bits of HelloSwing do?

• JFrame frame = new JFrame("The Hello World
Frame!");

This creates a variable frame which is an object of type
JFrame

frame is then intialised, and its title set.

• JLabel label = new JLabel("Hello World!",
JLabel.CENTER);

This creates a variable label which is an object of type
JLabel

label is then initialised to hold the text Hello World!

cisc3120-fall2012-parsons-lectI.1b 17



• frame.getContentPane().add(label);
– label is then added to frame
– Note that the dot notation is similar to that of C++
– We pass the output of the method add to the method
getContentPane().

• frame.setSize(400,400);
– the size of frame is set.

• frame.setVisible(true);
– frame is made visible.

cisc3120-fall2012-parsons-lectI.1b 18



A multiclass program

• The examples we have seen so far are extremely simple.

• One aspect of the simplicity is that they only have a single class.

• Our next example has more

– Well, two.

• The Eclipse project for this example is called HelloMoving
since it takes the previous example and makes the text move.

• Since each class has to be in a file with the same name, naturally
this means that we have multiple files.

• A neat thing about the Java compiler is that it figures out all the
dependencies.

– A nice change for those used to handling this in C or C++

cisc3120-fall2012-parsons-lectI.1b 19



• Here’s what the window looks like:

cisc3120-fall2012-parsons-lectI.1b 20



• This is more of a GUI since it responds to what the user does.

cisc3120-fall2012-parsons-lectI.1b 21



• Here we have two classes:

– HelloMoving
– MovingComponent

• helloMoving is the same as HelloSwing, but instead of:

JLabel label = new JLabel("Hello World!",
JLabel.CENTER);

frame.getContentPane().add(label);

It has:
frame.getContentPane().add(new
MovingComponent());

• So it replaces the JLabel object with a new kind of object
MovingComponent

cisc3120-fall2012-parsons-lectI.1b 22



• So, rather than using the library object JLabel, we define our
own component.

• This is what is in the MovingComponent class.

• The key parts of MovingComponent are explained on the next
couple of slides.

cisc3120-fall2012-parsons-lectI.1b 23



public class MovingComponent extends JComponent
implements ActionListener

• Our class definition is a modification of JComponent.

• Our class responds to user actions.

cisc3120-fall2012-parsons-lectI.1b 24



public MovingComponent() {
theButton = new JButton("Press me!");
setLayout(new FlowLayout());
add(theButton);
theButton.addActionListener(this);

}

• This is code that gets run when a MovingComponent is created.

– It is a constructor

• It creates a button that says “Press me!” and associates a listener
with it.

cisc3120-fall2012-parsons-lectI.1b 25



public void paintComponent(Graphics g){
g.drawString("Hello, Java!", msgX, msgY);}

• Put the message “Hello, Java!” at a specific point in the frame.

cisc3120-fall2012-parsons-lectI.1b 26



public void actionPerformed(ActionEvent e){
if(e.getSource() == theButton){
msgX++;
msgY++;
repaint();

}
}

• If an action happens, and it is the pressing of the button then
change the coordinates of the message and repaint the window.

cisc3120-fall2012-parsons-lectI.1b 27



Onwards and upwards

• As I (should have) already said, this course does not aim to teach
you all of Java.

• Rather it is going to prod you to pick up some aspects of Java for
yourselves.

– By having you learn them to finish the homeworks

• To help you, there is lots of information online.

• A good place to start is the Oracle Java documentation:

http://docs.oracle.com/javase/7/docs/api/

cisc3120-fall2012-parsons-lectI.1b 28



A note on homework

• I will post the first homework over the weekend.

• It will involve taking MovingComponent and modifying it.

• You will submit your work to me electronically.

– Instructions on what you need to do will be included with the
homework.

• To do this you will need to extract the .java files from the
Eclipse project.

• The next slide shows you what you need to do.

cisc3120-fall2012-parsons-lectI.1b 29



src

HelloMoving.java
MovingComponent.java

bin

HelloMoving

HelloMoving.class
MovingComponent.class

• I need the .java files for every homework.

cisc3120-fall2012-parsons-lectI.1b 30



src

HelloMoving.java
MovingComponent.java

bin

HelloMoving

HelloMoving.class
MovingComponent.class

These are the ones I need

• I need the .java files for every homework.

cisc3120-fall2012-parsons-lectI.1b 31



Summary

• Today we covered some Java basics

– A few simple programs
– A very basic GUI

• This is enough to get you writing simple Java programs

– Which you will have to do for the homework

• More next week.

cisc3120-fall2012-parsons-lectI.1b 32


