
MORE BASIC JAVA

Today

• Today we will continue to look at some of the basic aspects of
Java, including:

– Data types
– Objects (quickly)
– Control structures
– Exception handling

• We will also constrast some of these aspects with C++.

cisc3120-fall2012-parsons-lectI.1a 2

• Again, lots of this material is drawn from Java in a Nutshell,
David Flanagan, O’Reilly . . .

cisc3120-fall2012-parsons-lectI.1a 3

main
• Remember HelloWorld:

public class HelloWorld{
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

• The argument (String[] args) allows access to the
parameters of the program when it is run from the
command-line.

• (This is the parameter that is conventionally called argv in C++)
• If we want the number of arguments, we can get that with:

args.length()

cisc3120-fall2012-parsons-lectI.1a 4

Comments
• You should have noticed comments in the programs we looked

at last time.

• These began with:

// Here is a comment

• As in C++, we can also have comments between /* and */:

/* Here is a multi-line comment
which continues
until we get to this end comment symbol */

• Comments using /* and */ do not nest.

• So, a good suggestion is to mainly use // for short comments so
that you can comment out large sections with /* and */ do not
nest when debugging.

cisc3120-fall2012-parsons-lectI.1a 5

• Java also supports a special “doc comment”:

/** Here is doc comment
which continues
until we get to this end comment symbol */

• The javadoc tool constructs simple online documentation from
these comments.

cisc3120-fall2012-parsons-lectI.1a 6

Constants

• The keyword final prevents a variable having its value
changed.

– It becomes a constant

• So values have to be given to such variables when they are
defined:

public static final double PI = 3.1415927;

• By convention constants are given names in CAPITALS.

• The compiler uses constant values, where possible, to compute
values at compile-time.

cisc3120-fall2012-parsons-lectI.1a 7

Primitive data types

• In Java, all variable have guranteed default values

– The compiler might warn you about relying on them.

• Basic types of types:

– Boolean
– Character
– Integral (integer) value
– Floating-point

cisc3120-fall2012-parsons-lectI.1a 8

boolean

• Contains: true or false

• Default: false

• Size: 1 bit.

• Note that these are NOT integers — have to convert between
integers and booleans

cisc3120-fall2012-parsons-lectI.1a 9

char

• Contains: Unicode character

• Default: \u0000

• Size: 16 bits.

• Range: \u0000 to \uFFFF

cisc3120-fall2012-parsons-lectI.1a 10

• Can write character constants in programs between single
quotes:

char c = ’A’;

• Standard C/C++ escape characters work:

char newline = ’\n’;

• Since Java uses Unicode for characters, Unicode escape
sequences work as well:

char aleph = ’\u0500’;

cisc3120-fall2012-parsons-lectI.1a 11

byte

• Contains: Signed integer

• Default: 0

• Size: 8 bits.

• Range: -128 to 127

cisc3120-fall2012-parsons-lectI.1a 12

short

• Contains: Signed integer

• Default: 0

• Size: 16 bits.

• Range: -32768 to 32767

cisc3120-fall2012-parsons-lectI.1a 13

int

• Contains: Signed integer

• Default: 0

• Size: 32 bits.

cisc3120-fall2012-parsons-lectI.1a 14

long

• Contains: Signed integer

• Default: 0

• Size: 64 bits.

cisc3120-fall2012-parsons-lectI.1a 15

• No unsigned integral values

• Not legal to write:

long int

short int

• Division or modulo by zero throws an exception

cisc3120-fall2012-parsons-lectI.1a 16

float

• Contains: Floating point (IEEE 754)

• Default: 0.0

• Size: 32 bits.

cisc3120-fall2012-parsons-lectI.1a 17

double

• Contains: Floating point (IEEE 754)

• Default: 0.0

• Size: 64 bits.

cisc3120-fall2012-parsons-lectI.1a 18

• Floating point literals are written as in C/C++:

double a = 2.0;

• These can also be indicated by using d, D:

double b = 2d;

• At this point float is pretty much deprecated and you’ll find
some weird behavior if you use float.

cisc3120-fall2012-parsons-lectI.1a 19

Integer

• Each primitive datatype has an associated class.

– The class for int is Integer

• This class provides us with some useful functionality that works
with the datatype.

• For example, we’ll need to convert integers to strings that
represent the integer value.

– That is we’ll need the string "5" from the integer 5.

a = 5;
Integer aInt = 5;
g.drawString("a = " + aInt.toString(), 10, 20);

cisc3120-fall2012-parsons-lectI.1a 20

Reference types

• Java does not have pointers.

– But it (naturall) still needs references.

• All primitive types are handled “by value”.

– When you declare a variable, that variable holds the relevant
value.

– A copy of that value is passed to methods.

• Non-primitive types (objects, arrays) are handled “by reference”

– When you declare a variable it holds a reference (address).
– A copy of this reference is passed to methods.

cisc3120-fall2012-parsons-lectI.1a 21

• It is not uncommon to have two (reference) variables refer to the
same object:

JButton p, q;
p = new JButton();
q = p;

• So, if we change p, we also change q:

p.setLabel("Ok");
String s = q.getLabel();

cisc3120-fall2012-parsons-lectI.1a 22

Objects (quickly)

• Declaring a variable that is an object doesn’t create the object:

JButton b;

• The new keyword is required to create the object:

b = new JButton();

• Here the variable b is a reference to the object.

• Can also use the newInstance() method or by “deserializing”
an object.

cisc3120-fall2012-parsons-lectI.1a 23

• Objects of type String can be created as follows:

String s = "metamorphosis";

cisc3120-fall2012-parsons-lectI.1a 24

• We access objects using the dot notation.

Point p = new Point();
p.x = 2.0;
p.y = 3.0;

• Very similar notation is used for methods:

Rectangle r = new Rectangle();
:
:
double theArea = r.area();

cisc3120-fall2012-parsons-lectI.1a 25

• In Java we don’t have to delete objects.

• Instead, Java uses garbage collection to detect objects that are not
longer being used.

– Objects with no more references to them.

• Such objects are automatically deleted.

• So we don’t have to worry about this.

cisc3120-fall2012-parsons-lectI.1a 26

Strings
• Strings are instances of the java.lang.String class.

• Created and assigned just like primitive variables:

String s;
s = "hello world!";

• String values can’t be changed

– Need to create a StringBuffer, play with that, and then
make a new String from it.

• Lots of useful methods that you can call on Strings:

– length()
– equals()
– substring()
– . . .

cisc3120-fall2012-parsons-lectI.1a 27

Arrays

• Arrays are a lot like objects:

– Manipulated by reference.
– Dynamically created by new
– Garbage collected.

• Some details follow.

cisc3120-fall2012-parsons-lectI.1a 28

• One way to create an array is to reserve space for it and fill in the
values later:

JButton buttons[] = new JButton[10];

• This can be broken into two parts:

JButton buttons[];
buttons = new JButton[10];

• Allowing us to change our mind:

buttons = new JButton[20];

• It may helpto think of this as the difference between defining a
C++ array, and defining a pointer to a type that is then assigned
the address of an array.

cisc3120-fall2012-parsons-lectI.1a 29

• The other way to create an array is to use an initializer:

int lookupTable[] = {1, 2, 4, 8, 16, 32, 64};

cisc3120-fall2012-parsons-lectI.1a 30

• We access array elements using the same notation as in C/C++

int lookupTable[] = {1, 2, 4, 8, 16, 32, 64};

int a = lookupTable[3];

• As always, the first element of the array has number 0;

cisc3120-fall2012-parsons-lectI.1a 31

Operators

• The set of Java operators looks a lot like the set of C/C++
operators.

• instanceof
allows you to check if an object is an instance of a class (or
implements a given interface).

• +
can be used to concatenate Strings

• Note that Java doesn’t do operator overloading.

cisc3120-fall2012-parsons-lectI.1a 32

Control structures
• if, if/else, while and do/while statements are pretty much

as you know them from C/C++.

• You can’t get away with some of the tricks you may have learnt
in C/C++ tho’.

– The conditional expression (the bit inside the parentheses) has
to be a boolean.

– So, this:
int i = 0;
while(i) {
i++;

}

would not be allowed.

cisc3120-fall2012-parsons-lectI.1a 33

• The switch statement can use:

– byte
– char
– short
– int
– long

as the case labels.

cisc3120-fall2012-parsons-lectI.1a 34

• for loops allow multiple variables to be handled:

int i, j;
for(i=0, j=0; i < j; i++, j--){

System.out.println(i+j);
}

• These variable can also be declared in the loop

for(int i=0, j=0; i < j; i++, j--){
System.out.println(i+j);

}

in which case their scope is the loop itself.

cisc3120-fall2012-parsons-lectI.1a 35

for/in

• Java includes a new form of for loop.

• Given

int lookupTable[] = {1, 2, 4, 8, 16, 32, 64};

we could define:

for(int n : lookupTable){
System.out.println(n)

}

which would print out each element of the array in turn.

• In other words the for instantiates n with each element of the
array in turn.

cisc3120-fall2012-parsons-lectI.1a 36

• It is customary to read the : as “in”

– Hence the name of the construct

• Thus

for(int n : lookupTable){
System.out.println(n)

}

is read “for int n in loookupTable”.

• Note that the type of the loop variable (n) has to match the type
of the array elements.

cisc3120-fall2012-parsons-lectI.1a 37

Methods

• Methods look much like they do in C/C++, for example:

double distanceFromOrigin(double x, double y){
return Math.sqrt(x*x + y*y);

}

• There are additional keywords (modifiers) that can be placed in
front of the return type

– We will get to these later.

cisc3120-fall2012-parsons-lectI.1a 38

• One nice thing that Java makes easy is writing functions that
take variable numbers of arguments:

int max(int first, int... rest){
int max = first;
for (int i: rest){
if (i > max){

max = i
}
return max;

}

• This says that max has one argument that is an integer and zero
or more other integer arguments.

cisc3120-fall2012-parsons-lectI.1a 39

• All these are reasonable ways to call max:

max(1);
max(1, 2);
max(1, 2, 3);

• Clearly those other arguments, if they exist, are handled like an
array.

cisc3120-fall2012-parsons-lectI.1a 40

Summary

• We have covered some of the basic syntax of Java, and some of
the building blocks from which we can construct classes.

– This looks a lot like C/C++, with some minor differences.

• Perhaps the biggest is the absence of pointers

– Though references give us much the same behavior without
the same possibility for error.

• The next step is to look at creating classes and objects.

– We will start that next week.

cisc3120-fall2012-parsons-lectI.1a 41

