
CLASS DESIGN



Today

• Today we will talk about the basics of defining classes in Java.

• In particular we will look at:

– Class definition
– Access to data fields
– Constructors
– Finalizers
– Methods
– Class fields and methods
– Subclasses

cisc3120-fall2012-parsons-lectII.2 2



• Again, lots of this material is drawn from Java in a Nutshell,
David Flanagan, O’Reilly . . .

cisc3120-fall2012-parsons-lectII.2 3



A first class

• Here is the definition of a simple class that we can use to hold x
and y coordinates.

• As we will see, this can be useful in writing programs that
display graphic elements.

public class Point{
public int x, y;

}

• This defines a kind of datatype called Point which holds two
fields called x and y which are both ints.

cisc3120-fall2012-parsons-lectII.2 4



• Once we have defined the class, we can use it.

• The following code creates an instance of the class:

Point p;
p = new Point();

• The first line creates a reference to a Point.

• The second creates a Point object and makes p refer to it.

– Note the syntax: Point is followed by a pair of parentheses.

• We can combine the two lines into:

Point p = new Point();

cisc3120-fall2012-parsons-lectII.2 5



• Since x and y are public, we can handle them as follows.

• Setting their value:

p.x = 3;

• Reading their value:

System.out.println(p.x);

• Changing their value:

p.y = p.x + 3;

• However, having public fields is generally considered bad
programming practice.

cisc3120-fall2012-parsons-lectII.2 6



A second class

• Here is a better Point class:

public class Point{
private int x, y;

}

• However, making the fields private means you can’t access
them directly.

– That is what private means.

• The solution is to write public functions to read and write
private fields.

– A simple API

cisc3120-fall2012-parsons-lectII.2 7



• For example, we can add these functions to the definition of
Point.

public void setX(int x){
this.x = x;

}

public int getX(){
return x;

}

• For the full definition of Point see Point.java on the course
website.

cisc3120-fall2012-parsons-lectII.2 8



• Note the use of this in setX to disambiguate between x, the
parameter, and this.x the field.

• this is a reference that refers to the object where the this
occurs.

• We don’t need to use this in getX because there is no
ambiguity.

cisc3120-fall2012-parsons-lectII.2 9



Constructors

• When we create a new object, we make a call like:

Point p = new Point();

• The reason for the parenthesese above is that creating the Point
involves calling a function.

– Constructor

• Java will create a constructor for every class we define.

• Often we want to make our own.

cisc3120-fall2012-parsons-lectII.2 10



• Here is a constructor for Point:

public Point(){
this.x = 0;
this.y = 0;

}

• The point of constructors is to combine:

– Object creation
– Object initialisation.

cisc3120-fall2012-parsons-lectII.2 11



• We are allowed to write multiple constructors provided that they
have different numbers and/or types of parameters.

– Java uses the combination of parameters to distinguish
between constructors.

• Here is another:

public Point(int x, int y){
this.x = x;
this.y = y;

}

cisc3120-fall2012-parsons-lectII.2 12



• We can invoke one constructor from another, for example:

public Point(int x){
this();
this.x = x;

}

• The second line does what we would expect — it uses the
parameter to set the value of the x field.

• The first line uses this() to invoke the constructor with no
parameters.

cisc3120-fall2012-parsons-lectII.2 13



• We could also have written this:

public Point(int x){
this(5, 5);
this.x = x;

}

where the first line would have invoked the constructor with
two parameters.

cisc3120-fall2012-parsons-lectII.2 14



• If you are going to use this to invoke another constructor in
this way, it has to be the first line in the constructor it is called in.

• It even has to ge before any local variable definitions.

cisc3120-fall2012-parsons-lectII.2 15



Finalizers

• In C++ we often need to define destructors to release memory
when an object is deleted.

• In Java we don’t have to worry about this

– Garbage collection.

• However, sometimes there are things we need to do when an
object is no longer being used.

– Close a file or a socket.

• We define a function finalize() to do whatever is required.

• finalize() is always declared public or protected
(We will get too protected shortly).

cisc3120-fall2012-parsons-lectII.2 16



Composition
• Composition is using classes as fields within another class.

• For example, here is a class that uses Point:

public class Circle{
private Point location;
private double radius

}

• Since the fields are private, we have to write API methods for
them.

• The ones to access location can use the Point methods:

public void setLocationX(int x){
location.setX(x);

}

and so on.

cisc3120-fall2012-parsons-lectII.2 17



• Let’s also write a constructor for Circle:

public Circle(){
location.setX(1);
location.setY(1);
radius = 1.0;

}

• Note that even in the constructor we have to use the API
functions for location since its x and y values are private to it
(the Point).

cisc3120-fall2012-parsons-lectII.2 18



Class fields and methods

• When dealing with circles it is helpful to have the value of pi
easily accessible.

• So let’s add this:

public static final double PI = 3.1415927

to Circle

• We use final because we are defining a constant.

• More important here is the fact that we use the keyword
static.

• In this context it defines a class field.

cisc3120-fall2012-parsons-lectII.2 19



• That is a field that is associated with the class, not with a specific
instance/object.

– Just one copy of it.

• Since it is associated with the class, it is available to every object
in the class.

cisc3120-fall2012-parsons-lectII.2 20



• In addition, since (in this case) it is public, it is available to
objects outside the class.

– A private class field would only be available to objects of
that class.

• For those other objects to access it, they must use its full name:
Circle.PI.

• Public class fields are rather like global variables.

– But the need to use the full name ameliorates the name clash
problem.

cisc3120-fall2012-parsons-lectII.2 21



• We can also have class methods, again declared using the
static modifier:

public static double radsToDegs(double radians){
return radians * 180/PI;

}

• Note that class methods can use class fields, but not the regular
fields (the non-class fields).

cisc3120-fall2012-parsons-lectII.2 22



Subclasses
• Here is a sub-class of Circle
public class PCircle extends Circle{

private Point origin;

public PCircle(){
super();
this.origin.setX(0);
this.origin.setY(0);

}

public PCircle(int x, int y){
super();
this.origin.setX(0);
this.origin.setY(0);
this.location.setX(x);
this.location.setY(y);

}

}

cisc3120-fall2012-parsons-lectII.2 23



• The use of the extends keyword defines PCircle to be a
subclass of Circle.

• Equally, Circle is a superclass of PCircle.

• Can create a subclass of any existing class:

– Java library class
– User defined

cisc3120-fall2012-parsons-lectII.2 24



• As a sub-class, PCircle inherits all of the methods and fields of
Circle.

– Hence the references to location

• It also contains new fields that are declared in PClass.

• Note the use of super() in the constructors.

• This is a reference to the constructor for Circle.

• Like this(), it has to be the first thing in the constructor

– Before local variable declarations.

cisc3120-fall2012-parsons-lectII.2 25



Summary

• This lecture introduced the basics of classes and objects:

– Defining and instantiating a class.
– Constructors and finalizers
– Subclasses

• We will cover more advanced topics on classes next week.

cisc3120-fall2012-parsons-lectII.2 26


