
INHERITANCE



Today

• Today we will look into more detail about classes in Java.

• In particular we will look at subclasses and inheritance.

• We’ll also talk about interfaces.

cisc3120-fall2012-parsons-lectII.3 2



• Again, and likely for the last time, lots of this material is drawn
from Java in a Nutshell, David Flanagan, O’Reilly . . .

cisc3120-fall2012-parsons-lectII.3 3



Recap

• Recall the class Circle from last lecture.

public class Circle{
private Point location;
private double radius

}

• And recall that it had a sub-class PCircle.

public class PCircle extends Circle{

}

cisc3120-fall2012-parsons-lectII.3 4



• PCircle is a sub-class of Circle

• Circle is a superclass of PCircle.

cisc3120-fall2012-parsons-lectII.3 5



• Clearly we can define references to both Circle and PCircle.

PCircle pc;
Circle c;

• What is less obvious is that this:

c = pc;

is legal without casting.

• Since every PCircle is a Circle, no conversion is necessary.

• This is one of the neat things that class/subclass relationships
allow us to do.

cisc3120-fall2012-parsons-lectII.3 6



Class Hierarchy

• Superclass and subclass relationships form a class hierarchy.

• Every class you define has a superclass.

• If you don’t specify a superclass with the extends keyword,
then java.lang.Object is the superclass.

• java.lang.Object is the only Java class without a superclass.

• Every object inherits from java.lang.Object.

cisc3120-fall2012-parsons-lectII.3 7



Object

Circle

Math

System

Reader

PCircle

InputStreamReader

FilterReader

StringReader

FileReader

cisc3120-fall2012-parsons-lectII.3 8



Constructor chaining

• Our definition of PCircle included a constructor:

public PCircle(){
super();
this.origin.setX(0);
this.origin.setY(0);

}

which explicitly makes a call to the constructor of Circle.

cisc3120-fall2012-parsons-lectII.3 9



• Java makes sure that the constructor for a class is called
whenever an object of that class is created.

• Java also makes sure that the constructor is called whenever an
object of a subclass is called.

• If the first line of a constructor does not invoke a constructor
with:

– this(); or
– super()

Java will insert the call super(), the constructor with no
arguments.

cisc3120-fall2012-parsons-lectII.3 10



• When we create a PCircle, it will call the constructor above.

• This explicitly calls the constructor for Circle using super().

• That call implicitly calls super() itself, this time to run the
constructor for Object.

• The constructor for Object runs, then the body of the
constructor for Circle.

• Finally the constructor for PCircle runs.

• Constructor calls are thus chained.

cisc3120-fall2012-parsons-lectII.3 11



• Q: What happens if a class does not have a constructor defined?

• A: Java creates one which is just a call to super(), the no
argument version of the constructor for the superclass.

cisc3120-fall2012-parsons-lectII.3 12



Finalizer chaining

• Finalizers do not chain.

• If a class finalizer wants to invoke the finalizer of its superclass,
it must do so with:

super.finalize();

cisc3120-fall2012-parsons-lectII.3 13



Hiding fields

• Circle hs a field radius.

• Imagine that we add a field radius to PCircle as well.
(This is contrived, but this kind of naming issue does arise).

• How can we refer to the two fields radius from within
PCircle so that we get the one we want?

• radius refers to the one in PCircle.

• this.radius refers to the one in PCircle

• super.radius refers to the one in Circle

• So, super, once again, can be used to refer to the superclass.

cisc3120-fall2012-parsons-lectII.3 14



• You can also refer to Circle like this:

((Circle) this).radius

• Here we cast the this reference to be of type Circle.

• You can think of this as making this refer to the Circle part of
the class.

cisc3120-fall2012-parsons-lectII.3 15



• This technique allows us to refer to more than just the superclass.

• Imagine we have classes A, B and C, all with a field x.

• A is the superclass of B, and B is the superclass of C

• Within C:

– x refers to the field in C

– this.x refers to the field in C

– super.x refers to the field in B

– ((B) this).x refers to the field in B

– ((A) this).x refers to the field in A

• Note that super.super.x is not legal.

cisc3120-fall2012-parsons-lectII.3 16



Overriding constructors

• Hiding is when a subclass has a field with the same name as a
superclass field.

• Overriding is when a subclass has a method with the same name
as superclass method.

• Unlike hiding, this happens a lot

• Typically this is because we want to refine the way the method
works to take advantage of the additional fields in the subclass.

cisc3120-fall2012-parsons-lectII.3 17



A more complex example

• The rest of this lecture uses the Fox/Rabbit example which you
can download from the course website.

– The whole example is in a file EcoSystem.zip

• We want a model with several kinds of thing (rabbits and foxes)
which have some common features:

– location in space
– ability to move
– color

• So, rather than duplicate code, we create a class hierarchy.

cisc3120-fall2012-parsons-lectII.3 18



public abstract class Animal{
private Point location;
protected AnimalColor myColor;

public setLocationX(int x){
location.setX(x);

}
:

move(){
:

}

cisc3120-fall2012-parsons-lectII.3 19



• Since Animal has a private field location, it provides an
API for it.

• This API uses the API for Point
(Point is the same class we defined before).

• Here we only show the function to set the x coordinate, but there
would be a function to set the y coordinate and functions to get
the values of both x and y.

• We might also have a default implementation of the move
function.

cisc3120-fall2012-parsons-lectII.3 20



public class Rabbit extends Animal{
}

public class Fox extends Animal{
}

• Both of these subclasses provide their own implementation of
move(), overriding the version in Animal.

• Note that in Java you cannot call the move() method in Animal
from Rabbit.

• If we use:

((Animal) this).move();

we will just get the version for Rabbit.

cisc3120-fall2012-parsons-lectII.3 21



• This is a feature.

• It is an example of polymorphism, the idea that you can use the
same code to get different effects depening on what kind of
object you pass it.

• For example, you can write code that takes a set of Animals as
input, and calls move on each of them.

• The Foxes will move like Foxes (using the Fox move).

• The Rabbits will move like Rabbits

• You’ll get to do this in the lab and the homework.

cisc3120-fall2012-parsons-lectII.3 22



Access control

• Access control is to do with the way that fields and methods are
called.

• We have seen that public fields and methods are accessible
from outside the object/class.

• While private fields and methods are only accessible from
inside the the object/class.

• Java is very strict with the notion of private.

• The field location in Animal is only accessible from within
Animal.

– It is not accessible from Rabbit or Fox without using the
API.

cisc3120-fall2012-parsons-lectII.3 23



• If we want a field or method to be directly accessible from a
subclass but we don’t want it to be public, we can make it
protected.

• The field MyColor in Animal is an example.

– Though I think this would be better as a private field, it
serves as an example of protected.

cisc3120-fall2012-parsons-lectII.3 24



final

• Java places no limits on the length of the class-subclass chain.

– Given a class, we can always create a subclass of it.

EXCEPT, when that class was defined using the modifier final.

• Thus:

public final class lastOne extends previousOne {

}

would prevent anyone from creating a subclass of lastOne.

• Many of the Java System classes are final.

cisc3120-fall2012-parsons-lectII.3 25



• You can also define methods with final.

• This prevents them being overridden.

• It also helps to make them run more efficiently since Java doesn’t
have to check at runtime whether there is another version of the
method that needs to be called.

• We have also already seen what using final does for a field.
(Basically turns the field into a constant).

cisc3120-fall2012-parsons-lectII.3 26



Abstract classes

• As we have discussed it so far, Animal is there to have
subclasses made from it.

– making an instance of Animal doesn’t make a lot of sense.

• We can formalise this by making it abstract:

public abstract class Animal{

}

• Once it is abstract, it is not possible to make instances of it.

cisc3120-fall2012-parsons-lectII.3 27



• There is also the concept of an abstract method.

• In our EcoSystem, all the species (sub-classes of Animal will
define their own way of moving.

– Nobody will call the version of move in Animal

• We could just define a version in Animal with a blank body, but
it is neater to make it abstract:

public abstract void move();

• Note that an abstract method has no body, just a semicolon.

cisc3120-fall2012-parsons-lectII.3 28



• Note also that an abstract method can only be defined for a class
that is abstract.

• An abstract method is thus like a pure virtual method in C++ in
that it forces a class that contains it to be abstract.

cisc3120-fall2012-parsons-lectII.3 29



Interfaces

• An interface is defined rather like a class:

public interface Predator{
void eat();
}

• Though it only contains methods (no fields) and all the methods
are abstract.

• One important thing about interfaces is that you can create
references of that type:

Predator p = new Predator();

• You can also allow classes to be of the interface type.

– This gives some of the advantages of multiple-inheritance.

cisc3120-fall2012-parsons-lectII.3 30



• We associate classes with interfaces by having a class implement
the interface:

public class Rabbit extends Animal
implements Predator{

}

• With this declaration, Rabbit has to provide a definition for all
the functions in the Predator interface.

– If it doesn’t, the class must be asbtract
• But it now allows us to refer to a Rabbit using a Predator

reference:

Rabbit r = new Rabbit();
p = r;

• Another way to include polymorphism.

cisc3120-fall2012-parsons-lectII.3 31



• A class can implement many interfaces.

cisc3120-fall2012-parsons-lectII.3 32



• Note that there are cases where it is unclear whether something
should be an abstract class or an interface.

– If an abstract class has no data fields and no non-abstract
functions, it will look a lot like an interface.

• If this is the case, a common solution is to define both.

• First write the interface.

• Then write an abstract class that provides default
implementations of some of the methods in the interface.

cisc3120-fall2012-parsons-lectII.3 33



Summary

• This lecture looked in more detail at subclasses and inheritance.
We looked at:

– hiding,
– overriding, and
– polymorphism.

• It also covered some other topics:

– abstract classes, and
– interfaces

• This ends the part of the course that it about Java specifically.

• Next week we will move on to talk about more general topics
and illustrate them using Java.

cisc3120-fall2012-parsons-lectII.3 34


