
MORE GUI COMPONENTS



Today

• Last time we looked at some of the components that the:

– AWT
– Swing

libraries provide for building GUIs in Java.

• This time we will look at several more GUI component topics.

• We will also look at:

– Exception handling

a topic that isn’t directly related to GUIs, but which we need to
cover.

cisc3120-fall2012-parsons-lectIII.3 2



BorderTest

• The next few slides refer to the BorderTest program that you
can download from the class website.

cisc3120-fall2012-parsons-lectIII.3 3



• The BorderLayout class allows five things to be arranged in a
container:

– north
– south
– east
– west

on the borders of the container, and in the:

– center

• BorderLayout doesn’t need to be explicitly named, because it
is the default.

• Note that add() has two parameters.

cisc3120-fall2012-parsons-lectIII.3 4



• If you add a component to BorderLayout without specifying
what position you want it in, it is positioned in the center.

cisc3120-fall2012-parsons-lectIII.3 5



HTML labels

• The labels in buttons have to be strings, but they can also be
strings that implement HTML commands.

• For example:

String s1 = "<html><table>" +
"<tr><td>One</td><tr>Two</td></tr>" +
"<tr><td>Three</td><tr>Four</td></tr>" +
"</table></html>"

JButton button = new JButton(s1);

will display the table in the button.

• HTML can be used in this way to embed graphics in buttons.

cisc3120-fall2012-parsons-lectIII.3 6



Nesting Containers

• The next few slides refer to the NestContain program that you
can download from the class website.

cisc3120-fall2012-parsons-lectIII.3 7



• Here we want an interface that looks like:

Graphics

Buttons

• We can do this by nesting one container in another.

cisc3120-fall2012-parsons-lectIII.3 8



• We put the buttons in a GridLayout in one container.

• We then put this container in a second container along with the
graphics.

• We use Borderlayout for ths outer container.

– Make the container with the buttons the WEST component.
– Make the graphics the CENTER component.

cisc3120-fall2012-parsons-lectIII.3 9



Resize

• The next few slides refer to the Resize program that you can
download from the class website.

cisc3120-fall2012-parsons-lectIII.3 10



• If you run NestContain you will notice that if you resize the
window, the buttons behave as you would like:

– They change size as the window grows and shrinks.

• The graphics component, however, does not change in size.

• This is because we fixed its size with RADIUS.

• RESIZE shows a trick that allows us to resize graphics.

cisc3120-fall2012-parsons-lectIII.3 11



• It hinges on the following function:

public void setBounds(int x, int y,
int width, int height){

radius = Math.min(width, height) / 2;
super.setBounds(x, y, width, height);
repaint();

}

• This over-rides the setBounds() function but calls the
superclass version.

• This does not interfere with what setBounds does, but allows us
access to its parameters.

cisc3120-fall2012-parsons-lectIII.3 12



• setBounds() is called by the layout manager to tell a container
where it is on the screen and how big it is.

• x and y are the location within the screen.

• width and height are the window dimensions.

• Here we use them to set the size of the star.

cisc3120-fall2012-parsons-lectIII.3 13



Menus

• The main GUI component that we have not yet covered is the
menu.

• The next few slides refer to the SimplePaintMenu program
that you can download from the class website.
This program was also given out in class.

• This is an extension of the SimplePaint program from the last
lecture.

cisc3120-fall2012-parsons-lectIII.3 14



• We start by adding a menu bar, which is where menus live:

JFrame frame = new JFrame("SimplePaint");
Container pane = frame.getContentPane();

JMenuBar menuBar = new JMenuBar();
frame.setJMenuBar(menuBar);

• Note that we add the menu bar to the JFrame, not to the
ContentPane.

cisc3120-fall2012-parsons-lectIII.3 15



• Once we have a menu bar, then we can add menus:

JMenu fileMenu = new JMenu("File");
JMenu optionsMenu = new JMenu("Options");
menuBar.add(fileMenu);
menuBar.add(optionsMenu);

• And we can add shortcuts, keystrokes that will activate the
menu options:

fileMenu.setMnemonic(’F’);
optionsMenu.setMnemonic(’O’);

(To use these, hold down the Alt key while pressing the relevant
letter).

cisc3120-fall2012-parsons-lectIII.3 16



• We can then add items to the menus.

• Here we add an itemn to the File menu:

JMenuItem exit = new JMenuItem("Exit", ’x’);
fileMenu.add(exit);
exit.addActionListener(new GoodBye());

• The ’x’ is the keyborad shortcut here.

• The action listener will be called when the menu item is selected.

cisc3120-fall2012-parsons-lectIII.3 17



• In the above example, the connection between listener and menu
is simple — there is one listener for one menu item.

• Here is a more complex example from SimplePaintMenu

JMenu penAdjustMenu = new JMenu("Pen Size");
penAdjustMenu.setMnemonic(’P’);
JMenuItem smallPen = new JMenuItem("Small", ’S’);
penAdjustMenu.add(smallPen);
JMenuItem mediumPen = new JMenuItem("Medium", ’M’);
penAdjustMenu.add(mediumPen);
JMenuItem largePen = new JMenuItem("Large", ’L’);
penAdjustMenu.add(largePen);
optionsMenu.add(penAdjustMenu);

cisc3120-fall2012-parsons-lectIII.3 18



• We have one listener for all these menu items:

PenAdjuster penAdjust = new PenAdjuster(listener);
smallPen.addActionListener(penAdjust);
mediumPen.addActionListener(penAdjust);
largePen.addActionListener(penAdjust);

cisc3120-fall2012-parsons-lectIII.3 19



• In the listener we define:

public void actionPerformed(ActionEvent e){
painter.setPenSize(e.getActionCommand());

}

• The getActionCommand() returns the string in the menu item
so that we can write:

public void setPenSize(String size){
if (size.equals("Small")){

radius = 0;
diameter = 1;

}

cisc3120-fall2012-parsons-lectIII.3 20



Other GUI items
• Two useful components are check boxes and radio buttons.

• Radio buttons need to be grouped. Here’s an example:

• Given:

JPanel myPanel = new JPanel();

we can add a button to the panel using:

ButtonGroup myGroup = new ButtonGroup();
JRadioButton radioButton = new JRadioButton("Java");
radioButton.setActionCommand("Java");
myPanel.add(radioButton);
myGroup.add(radioButton);

• And we would repeat for all the other radio buttons we want
grouped together.

cisc3120-fall2012-parsons-lectIII.3 21



• In the listener we then ask the ButtonGroup what the
actionCommand of the selected button is:

string lang =
myGroup.getSelection().getActionCommand();

• Note that in this case we are assuming that the listener is an
object inside the one that defines the interface, allowing direct
access to myGroup.

cisc3120-fall2012-parsons-lectIII.3 22



• Check boxes are easier to set up since we don’t have an object to
group them, though we will typcially handle them by adding
them to their own panel:

JPanel mypanel2 = new JPanel();
myPanel2.add(new JCheckBox("Java"));

and we repeat the second part for other check boxes that we
want to group together.

• This panel is then added to a container that is part of the
interface.

cisc3120-fall2012-parsons-lectIII.3 23



• Since we can have several check boxes selected, we need to
handle them something like this in the listener:

Component[] components = myPanel2.getCOmponents();

for(Component c : components){
JCheckBox cb = (JCheckBox) c;
if(cb.isSelected()){
<whatever action we want>

}

• Again we assume that the listener has direct access to the
variables in the interface.

• Note that if myPanel2 contained other kinds of component, we
would have to pick out the check boxes before the if construct,
for example by using instanceof.

cisc3120-fall2012-parsons-lectIII.3 24



Exception Handling

• The next few slides refer to the TextInputWExceptH program
that you can download from the class website.

• This is an extension of the TextInput program from the last
lecture.

cisc3120-fall2012-parsons-lectIII.3 25



• Exception handling is one of the nice features of Java.

– Provides an elegant way to handle runtime problems with
programs.

– Allows programs to start running even when the compiler
knows there are problems.

• It is a legacy of Java’s origins in embedded systems.

– Now exploited in Android

cisc3120-fall2012-parsons-lectIII.3 26



• Exceptions are handled using:

try

catch

finally

• Also we may use:

throw

when we want to generate exceptions.

cisc3120-fall2012-parsons-lectIII.3 27



• When we expect code to generate exceptions that we will
handle, we wrap the code in a try construct.

try{

// This will run normally, except when there
// is an exception.

}

cisc3120-fall2012-parsons-lectIII.3 28



• To handle an exception, we add a catch to the try.

try{

}
catch(SomeException e1){

// If the try generates an exception, Java will
// try to match it against SomeException.
//
// If there is a match, code here will be excuted.
//
// That code can refer to the exception as e1.

}

cisc3120-fall2012-parsons-lectIII.3 29



• We can have multiple catch constructs for any try.

• It is typical to have different catches to handle the different
exceptions that might arise.

• If an execption in a given try does not match a following
catch, the interpreter looks for an enclosing try and its
corresponding catches.

• If these don’t exist, or don’t match the exception, it tries the
calling method.

• This process will eventually (if nothing catches the exception)
percolate up to main().

• If this doesn’t catch the exception, the interpreter prints a stack
trace on the console and exits.
(You will likely have seen this already.)

cisc3120-fall2012-parsons-lectIII.3 30



• After the last catch, we may have a finally.

• The code in a finally construct is always called after the try is
executed.

• This happens whether or not there is an exception, and whether
or not the exception is handled.

• The only time finally does not run is if try calls
System.exit().

• finally is useful for doing housekeeping things.

cisc3120-fall2012-parsons-lectIII.3 31



• Note that all exceptions are (of course) objects.

• The base class for exceptions is java.lang.Throwable

• Throwable has two subclasses:

– Error
– Exception

• It is rare to want to try to handle Errors. They are usually fatal
and best left alone.

cisc3120-fall2012-parsons-lectIII.3 32



• Sometimes we want to generate our own exception.

– That is we want to force one to happen.

• This allows us to use exception handling as a way of doing error
checking.

if (d2 < 0){
throw new IllegalArgumentException();

}

• The above example is from TextInputWExceptH2.

cisc3120-fall2012-parsons-lectIII.3 33



• The exception that is thrown must be a bona fide exception
object.

• But, of course, we can create our own exception (extending an
existing exception) if we need to.

cisc3120-fall2012-parsons-lectIII.3 34



Summary

• This lecture looked very quickly at a number of interface
components in Java:

– Buttons
– Reading from text fields
– Writing to text fields
– Listeners for multiple components
– Simple drawing
– Mouse events

cisc3120-fall2012-parsons-lectIII.3 35


