
NETWORKS



Today

• We now move on to the fourth topic in the course:

– Network programming

• Before we look at the support that Java provides for network
programming, we will look at some basic information on
networks.

• We will also look at threads, which we will need for some of the
network stuff that we do.

cisc3120-fall2012-parsons-lectIV.1 2



Network basics

• The reason we are interested in networks is that we want to pass
data between computers.

• What we will focus on today are:

– The issues in doing this
– Standard ideas to deal with the issues
– Some example instantiations of these ideas.

• In short the ISO/OSI model and TCP/IP.

cisc3120-fall2012-parsons-lectIV.1 3



cisc3120-fall2012-parsons-lectIV.1 4



• Think of the local area network or LAN as the basic building block.

cisc3120-fall2012-parsons-lectIV.1 5



• No hard and fast definition, but:

Group of computers and other hardware, in some
geographic local area, connected through a switch.

• I would define both the BC network and what I have at home as
LANs.

• Different LAN technologies:

– Ethernet (802.3, 802.11)
– Token ring

but typically think of a LAN as being homogenous in terms of
this technology.

cisc3120-fall2012-parsons-lectIV.1 6



• Sometimes talk of wide area networks, WANs, as several LANs
connected together.

• Typically this is in the context of some organization that owns all
the LANs.

cisc3120-fall2012-parsons-lectIV.1 7



• Also talk of internetworks as connections between different
network technologies:

cisc3120-fall2012-parsons-lectIV.1 8



Challenges

• The basic challenge is to get these different technologies to work
together:

– Different media
– Different speeds
– Different ways of passing data

• Typical computer science solution:

abstraction

• The ISO Open System Interconnection (OSI) model splits the
process of data transfer up, into simpler classes of task.

cisc3120-fall2012-parsons-lectIV.1 9



The OSI model

• “All people seem to need data processing”

cisc3120-fall2012-parsons-lectIV.1 10



• Upper layers:

– Application
– Presentation
– Session

deal with applications issues and typically are all software.

cisc3120-fall2012-parsons-lectIV.1 11



• Lower layers:

– Transport
– Network
– Data link
– Physical

handle data transport

• Physical and data link tend to be implemented in hardware and
software.

• Physical is responsible for placing information on the medium.

cisc3120-fall2012-parsons-lectIV.1 12



• While the OSI model is a nice way of thinking about what is
necessary to communicate, it is not itself a mechanism for
communication.

• Communication is made possible by using communication
protocols.

• A protocol is a set of rules and conventions that implement the
functions laid down by one or more layers in the OSI model.

cisc3120-fall2012-parsons-lectIV.1 13



Some protocols

• LAN protocols
Operate at physical and datalink layers.

• WAN protocols
Operate at lowest three layers.

• Routing protocols
Network layer protocols that exchange information between
routers to select the rignt path for network traffic.

• Network protocols
Upper level protocols in a protocol suite. User, for example, by
routing protocols.

cisc3120-fall2012-parsons-lectIV.1 14



How data is really transferred

• Here are some different analogies for the role of the different
layers in data transfer.

• None of them work exactly, but I think all of them help to
communicate the idea.

• The first imagines a message being passed between the British
Embassy and the Russian Embassy in some city.

cisc3120-fall2012-parsons-lectIV.1 15



cisc3120-fall2012-parsons-lectIV.1 16



cisc3120-fall2012-parsons-lectIV.1 17



• The next example imagines the way that two businesses
communicate.

cisc3120-fall2012-parsons-lectIV.1 18



cisc3120-fall2012-parsons-lectIV.1 19



• In a sense data does pass through all the levels of the model.

cisc3120-fall2012-parsons-lectIV.1 20



• Application sends data to a peer application (ie a browser
requesting a web-page).

• Application data attaches control information as a header and
passes data to the presentation layer.

• Presentation layer adds a header and passes to the session layer.

• . . .

• Physical layer adds a header and places the data on the network
hardware.

• At receiver physical layer removes the data, strips off the header
and passes it up to the datalink layer

• . . .

• Application layer reads the data.

cisc3120-fall2012-parsons-lectIV.1 21



• In another sense, layers communicate.

cisc3120-fall2012-parsons-lectIV.1 22



• We can think of software that implements protocols at each layer
in the model, “talking” to software at the same level in other
systems.

• For example, routing software (network layer) on one machine
talking to routing software on another, making use of the data
and transport layers.

cisc3120-fall2012-parsons-lectIV.1 23



• So data is passed between networks via the router.

cisc3120-fall2012-parsons-lectIV.1 24



• And, of course, data between applications passes through the
other layers as well.

cisc3120-fall2012-parsons-lectIV.1 25



Physical layer

• Physical layer defines the physical properties of the physical link.

– Electrical
– Mechanical
– Functional

• Defines characteristics like voltage levels and timing.

cisc3120-fall2012-parsons-lectIV.1 26



cisc3120-fall2012-parsons-lectIV.1 27



Datalink layer

• The data link layer provides reliable transfer of data over the
physical link.

• Defines the topology

– Ring
– Bus

• Defines flow control to make sure devices are not overloaded

• Reorders frames that are out of sequence

• Flags transmission errors.

cisc3120-fall2012-parsons-lectIV.1 28



• The data link layer has two sublayers

• The logical link control layer manages communications over a
single network link.
IEEE 802.2

• This is the connection on which everything else is built.

cisc3120-fall2012-parsons-lectIV.1 29



• The media access control (MAC) layer manages access to the
physical network.
IEEE MAC specification defines MAC addresses. These provide
unique identification at the data link layer.

cisc3120-fall2012-parsons-lectIV.1 30



Network layer

• Defines the network address

– Separate from the MAC address

• The Internet protocol (IP) defines network addresses so that it is
easy to route from them.

– Route easily established from source address, destination
address and subnet mask.

• Routers can thus use the network address to decide how to route
packets.

cisc3120-fall2012-parsons-lectIV.1 31



Transport layer

• Segments data from the session layer for transport across the
network.

• Provides error checking

– Checking for lost packets

• Provides error recovery

– Requesting retransmission

• TCP and UDP are transport layer protocols.

cisc3120-fall2012-parsons-lectIV.1 32



Session layer

• The session layer handles communication sessions:

– Establishes
– Manages
– Terminates

cisc3120-fall2012-parsons-lectIV.1 33



Presentation layer

• Provides coding and conversion functions to the application
layer.

• Having standard mechanisms for encoding different types of
data:

– MPEG
– QuickTime
– TIFF
– JPEG
– SSL

means that applications don’t have to provide these services —
they just decide what to send and let the presentation layer
protocols figure it out.

cisc3120-fall2012-parsons-lectIV.1 34



Application layer

• Interacts directly with the software the user runs.

• HTTP, FTP, SMTP are example application level protocols

cisc3120-fall2012-parsons-lectIV.1 35



Connection-oriented v connectionless

• Connection-oriented services have three phases:

– Open connection
– Data transfer
– Close connection

• Provide resource reservation

– Allows for DoS attacks

• Allow for detecting and resending lost packets.

• Connectionless services have none of these overheads, but
cannot detect lost packets.

cisc3120-fall2012-parsons-lectIV.1 36



Addressing

• MAC addresses provide a unique hardware address for a
physical device

– 48 bits total
– 24 bits are an organizationally unique identifier (OUI)

administered by the IEEE
Identifies vendor

– 24 bits assigned by vendor

• Since network addresses are used to route traffic, need to map
network to MAC addresses.

• Address resolution protocol (ARP) is used by TCP/IP.

cisc3120-fall2012-parsons-lectIV.1 37



• Start by assuming a device knows the source and destination
address of the data it needs to send.

• From this it can tell whether the destination is on the same
network or a remote network.

• When it needs to send data to a device on the same network it
needs to find the destination MAC address.

• Checks its ARP table — if address is there, done.

• If not stored, the device broadcasts the destination IP address to
every device on the network.

• The device that has a matching address sends its MAC address.

• Source device stores this correspondance and then sends the
data.

cisc3120-fall2012-parsons-lectIV.1 38



• When a device needs to send data to a device on a remote
network it looks for the MAC address of the default gateway,
just as above.

• The gateway forwards the data on to the destination network.

• The destination gateway uses ARP to find the MAC address of
the destination device.

cisc3120-fall2012-parsons-lectIV.1 39



Threads

• Often we need to deal with concurrency

– Different bits of code running more or less independently in
time.

• Once upon a time these had to be separate processes.

– Rather heavyweight.

• A more modern approach is that of threads

• These provide fine-grained concurrency within a process.

• Here we discuss the basic ideas behind the use of threads in Java.

cisc3120-fall2012-parsons-lectIV.1 40



• This material is drawn from Learning Java, Patrick Niemeyer,
Jonathan Knudsen, O’Reilly.

cisc3120-fall2012-parsons-lectIV.1 41



What are threads

• A thread is a flow of control within a program.

– Like processes, but threads within a program can easily share
state.

• Threads are like classes at Brooklyn College (or anywhere).

– Separate entities
– Share resources
– Only one entity uses a resource at the same time
– Need coordination to manage access to resources.

• Threads also have local data that is distinct.

cisc3120-fall2012-parsons-lectIV.1 42



Thread and Runnable

• All execution in Java is associated with a Thread object.

– That is what main() launches.

• New threads are born when a new instance of:

java.lang.Thread

is created

• This object is what we manipulate to control and coordinate
execution of the thread.

• To allow us to do this manipulation, we create an object that
implements the:

java.lang.Runnable

interface.

cisc3120-fall2012-parsons-lectIV.1 43



• Runnable is simple.

• We just have to implement one method:

public interface Runnable {
abstract public void run();

}

cisc3120-fall2012-parsons-lectIV.1 44



• Every thread then starts by executing the run() method of some
Runnable object.

• To see how we might do this, let’s look at the ThreadExample
program which is on the class webpage.

cisc3120-fall2012-parsons-lectIV.1 45



class ThreadOne implements Runnable{

Thread myThread;

public ThreadOne(){
myThread = new Thread(this);
myThread.start();

}

public void run(){
while(true){
System.out.println("One!");
}

}
}

cisc3120-fall2012-parsons-lectIV.1 46



• Creating an instance of this class will start a thread that executes
the code in run().

– We tell the thread which run() to execute by the call we
make to the thread’s constructor.

• Note that this is not the only way to set up a thread, but it is the
only one we will cover.

cisc3120-fall2012-parsons-lectIV.1 47



Scheduling

• The complete project SimpleExample has another object
ThreadTwo which prints out Two!.

• With my Java implementation, when you run the program, it
prints out One! for a while, and then prints out Two! for a while.

• This suggests that in my Java implementation, threads are
time-sliced.

• Each one runs for a while in some order (it seems that the first
thread to be started is the first one to run).

• On other Java implementations, you might get different
behavior.

• All the specification says is as follows.

cisc3120-fall2012-parsons-lectIV.1 48



• All threads have a priority value.

• Any time a higher priority thread becomes runnable, it preempts
any lower priority threads and starts executing.

• By default, threads with the same priority are scheduled
round-robin.

• This means that once a thread begins to run it continues until:

– It sleeps due to a sleep() or wait();
– It waits for the lock for a synchronized method;
– It blocks on I/O;
– It explicitly yields control using yield(); or
– It terminates.

cisc3120-fall2012-parsons-lectIV.1 49



Controlling threads

• There are a few methods that allow us to control the execution of
threads.

• We have already used start().

• stop(), suspend() and resume() are deprecated.

• We will discuss sleep(), wait() and notify().

• There are also join() and interrupt().

cisc3120-fall2012-parsons-lectIV.1 50



sleep()

• Sometimes we need to tell a thread to take a break.

• The method sleep() will do this.

– It takes an argument that is the number of milliseconds to
sleep for.

• sleep() is a class method of Thread, so it can be called either
using:

Thread.sleep()

or by calling it on a specific instance of Thread:

myOwnLittleThread.sleep()

cisc3120-fall2012-parsons-lectIV.1 51



• The project ThreadExWSleep, on the class webpage, is a
version of ThreadExample where the body of the two threaded
objects is altered like this:

public void run(){
while(true){
System.out.println("One!");
try{
myThread.sleep(1000);

}
catch(InterruptedException e){
// Guess we won’t get to sleep after all
}

}
}

cisc3120-fall2012-parsons-lectIV.1 52



• A sleeping thread can be woken up by an
InterruptedException so we need to specify what to do if
this happens.

cisc3120-fall2012-parsons-lectIV.1 53



Synchronization

• When threads share resources, they need to be synchronized

– Otherwise things can get confusing

• Imagine two threads trying to use the same variable at the same
time.

• (In our class example, imagine two classes trying to use the same
classroom at the same time).

• Even when you take scheduling (in the Java thread sense) into
account it can be an issue.

• Java provides some simple monitor-based methods for
controlling access.

cisc3120-fall2012-parsons-lectIV.1 54



• The most basic idea is that of synchronized methods.

• Here is an example from ThreadExWGraphics (class webpage
again) where two threads change the color of an graphical object:

public synchronized void changeColor(Color color){
if (this.theColor != color){

this.theColor = color;
}
repaint();

}

• Only one thread at a time is allowed to execute any
synchronized method of an object.

– The object is locked.

• Other threads are blocked until they can aquire the lock on the
object.

cisc3120-fall2012-parsons-lectIV.1 55



• Note that locks are reentrant, so a thread does not block itself.

• It can call itself recursively, and it can call other synchronized
methods of the same object.

cisc3120-fall2012-parsons-lectIV.1 56



wait() and notify()

• wait() and notify() provide more direct synchronization of
threads.

• When a thread executes a synchronized method that contains a
wait(), it gives up its hold on the block and goes to sleep.

• The idea is that the tread is waiting for some necessary event to
take place.

• Later on, when it wakes up, it will start to try to get the lock for
the synchronized object.

• When it gets the lock, it will continue from where it left off.

cisc3120-fall2012-parsons-lectIV.1 57



• What wakes the thread up from waiting is a call to notify()
on the same synchronized object.

cisc3120-fall2012-parsons-lectIV.1 58



• The project ThreadWNotifyWait illustrates these functions.

• This is like the previous example, except that ThreadOne and
ThreadTwo call wait() when they have moved the ellipse.

• They don’t get control back until ThreadThree calls notify().

cisc3120-fall2012-parsons-lectIV.1 59



• While there is lots more to know about threads, that is all we will
cover.

• I’ll hand out some material on threads next time.

cisc3120-fall2012-parsons-lectIV.1 60



Summary

• This lecture started our section on networking.

• It introduced some basic ideas about networks from a software
perspective:

– Mainly dealt with the OSI model

• It also talked a little bit about threads.

• Next week we will get into the support that Java provides for
network programming.

cisc3120-fall2012-parsons-lectIV.1 61


