
GRAPHICS TECHNIQUES



Today

• Last time we looked at some ways we can do graphics in Java.

• Today we will look a bit under the hood, understanding what
needs to be done to make these routines work.

•We’ll also look a bit at some of the other Graphics options in Java.

• In particular we’ll look at some of the options for manipulating
images.

cisc3120-fall2012-parsons-lectV.2 2



2D Graphics

• The 2D API in Java is made up of:

java.awt

java.awt.color

java.awt.font

java.awt.geom

java.awt.image

java.awt.print

•We’ll look at some of the features of these, especially those that
relate back to the basic drawing primitives from last week
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• An instance of java.awt.Graphics2D is called a graphics
context.

• A graphics context provides methods for drawing:

– Shapes
– Text
– Images

• It also holds contextual information about the drawing area.
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• Four ways to get a graphics2D object.

1. From AWT or Swing as the result of issuing a paint request
on a component
A graphics context is created and passed to paint() or
update()

2. Directly from an offscreen image buffer
Here we ask for the context directly — see double buffering.

3. By copying an existing Graphics2D object
Can do this using create(). Helpful in doing complex
drawings where different copies draw on the same area.

4. Directly from an onscreen component
Almost always a mistake.
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• Each time you call paint(), the windowing system gives the
component a new Graphics2D object to play with.

• Thus all previous context is lost (and needs to be reset if you
want it).

• AWT components may also have an update() method, which
allows context to be carried forward.
Not used by Swing.
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• For backward compatibility, paint()’s argument is always an
object of type Graphics.

• You will likely want to cast this to a Graphics2D to take
advantage of the features of the 2D API.
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The rendering pipeline

• Graphics2D has four rendering operations:

1. Draw an outline with draw()

2. Fill a shape with fill()

3. Write text with drawString()

4. Draw an image with drawImage()

• The way these things are achieved depends on the context.
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• The current paint determines the color or pattern used to fill a
shape.

• The stroke determines how outlines are drawn
(Like the nib on a pen).

• The current font determines the font.

•We can perform transformations.

• There is a compositing rule that determines how a new operation
is combined with an old one.

• All rendering is restricted to the interior of the clipping shape.

• The rendering hints control the tradeoff between speed and what
the result looks like.
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• Let’s look at examples of all of these things.
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•
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•We can transform an image, for example by moving it in the
frame, and by rotating it:

g2.translate(cx, cy);
g2.rotate(theta * Math.PI/180);

•We’ll look at how these operations are achieved later on.
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• This compositing command:

AlphaComposite ac =
AlphaComposite.getInstance(
AlphaComposite.SRC_OVER, (float).75);

g2.setComposite(ac);

sets the transaprency to 50%, allowing objects to be send through
those drawn “on top” of each other.
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• Any drawn object is clipped by the clipping shape in place when
that object is drawn.

• This sets the clipping shape to be an ellipse:

Shape e =
new Ellipse2D.Double(-cx, -cy, cx*2, cy*2);

g2.clip(e);
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• Rendering hints effect all the drawing operations. This:

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

turns on anti-aliasing, to smooth out rough edges.
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•
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• These examples can all be found in the Iguana project.

• Play with this to see how the various bits of the rendering
operation work.
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• Having looked at the methods Java provides for doing these
some basic graphics operations, we’ll take a look at what goes on
behind these operations.

•We’ll focus on the way that images are manipulated.
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Transformations

• Geometrical transformations allow you to manipulate drawings.

•Mathematical manipulation of the points that make up a
drawing.

• Three basic transformations:

– translating
– scaling
– rotating

• Matrix manipulation is used, so need some basic maths.
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Why matrices?

•We describe graphical objects with sets of coordinates:

– x and y for 2D graphics.
– x, y and z for 3D graphics.
– also add θi when we are interested in orientation.

(for example if we are having an object move)

• A set of coordinates can easily be written as a matrix:
 x1 x2

y1 y2



• This representation allows us to handle all objects, however
many coordinates describe them, in the same way.
(It is also a handy shortcut for writing down the math.)
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A quick guide to matrix math

• Scalar: a single number, either integer or real-valued.

• Vector: essentially a group of scalars that are manipulated
together; e.g., two scalars to represent a point in 2-dimensional
space or three scalars to represent a point in 3-dimensional space.

• Example vectors:
1
2
3

 or
 x

y

 or


x
y
1

 or


x
y
z


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• Two vectors of the same size can be added together by adding
their components; the result is another vector of the same size:


1
2
3

 +


4
5
6

 =


1 + 4
2 + 5
3 + 6

 =


5
7
9


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• Two vectors of the same size can be multiplied by each other to
compute what is called the dot product (or inner product); the
result is a scalar

• The dot product (·) is computed by multiplying the vectors’
individual components and then adding them together:


1
2
3

 ·


4
5
6

 = 1× 4 + 2× 5 + 3× 6 = 4 + 10 + 18 = 32

cisc3120-fall2012-parsons-lectV.2 23



• The general formula is:


x1
y1
z1

 ·


x2
y2
z2

 = (x1 × x2) + (y1 × y2) + (z1 × z2)
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• A matrix is just a vector with more than one column, e.g.:


1 5 3
8 1 4
2 9 1


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•We can multiply a matrix (or a vector) by a scalar:

2×


1 5
8 1
2 9

 =


2× 1 2× 5
2× 8 2× 1
2× 2 2× 9

 =


2 10
16 2
4 18


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•Multiplying two matrices together is like computing a bunch of
dot products between the rows of one matrix and the columns of
the other

• So in order to be able to multiply two matrices together, the
number of rows in one has to be the same as the number of
columns in the other

• The general formula for matrix multiplication is:

C(row,col) =
m∑

s=1
A(row,s) ∗ B(s,col)

where A is an n× m matrix and B is an m× p matrix and C is an
n× p matrix
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• So, for example, we can compute:

C =
[
x1 y1

]  x2
y2



• Or, in the notation of the general formula:

C =
[
A(1,1) A(2,1)

]  B(1,1)

B(1,2)



where A is an 1× 2 matrix and B is an 2× 1 matrix and C is an
1× 1 matrix (otherwise called a scalar); i.e., m = 1, n = 2 and p = 2

C = (A(1,1) × B(1,1)) + (A(1,2) × B(2,1))
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• Alternatively, we can compute:

C =

 x1
y1

 [ x2 y2
]

•Which, in the notation of the general formula, is:

C =

 A(1,1)

A(1,2)

 [ B(1,1) B(2,1)

]

where A is an 2× 1 matrix and B is an 1× 2 matrix and C is an
2× 2 matrix; i.e., m = 1, n = 2 and p = 2
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•We can think of this second case as: x1
y1

 [ x2 y2
]

=

 x1 × x2 x1 × y2
y1 × x2 y1 × y2



•We can also write this as:

C(1,1) =
1∑

s=1
A(1,s) × B(s,1) = A(1,1) × B(1,1) = x1 × x2

C(1,2) =
1∑

s=1
A(1,s) × B(s,2) = A(1,1) × B(1,2) = x1 × y2

C(2,1) =
1∑

s=1
A(2,s) × B(s,1) = A(2,1) × B(1,1) = y1 × x2

C(2,2) =
1∑

s=1
A(2,s) × B(s,2) = A(2,1) × B(1,2) = y1 × y2
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• A nice visualization of the general case of multiplying two
matrices is:

•My high school math teacher called this “diving rows into
columns”.
Each row in the lefthand matrix is combined with each column
in the right hand matrix.
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• If you check the previous examples, you’ll find they fit into this
mould.
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•We’ll also use the idea of a transpose, basically swapping rows for
colums:

[
x y 1

]T
=


x
y
1



and 
x
y
1



T

=
[
x y 1

]

•We’ll use this to make some of the operations easier to write
down.
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Transformations

• we will discuss three types of transformations:

– translating: shifting an object to a new location, without
changing its size or shape

– scaling: changing the size of an object
– rotation: turning an object about a particular point, without

changing the object’s size or shape

•We will discuss these in 2-dimensions only.

• The same approach works for 3D, the matrices are just bigger.
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• Each transformation can be descibed as a matrix computation.

• These are described in the next few slides

• Note that the examples shown use X-windows graphics
coordinate conventions, where the origin (0, 0) is in the upper left
corner of the screen, x increases moving to the right and y
increases moving down.

cisc3120-fall2012-parsons-lectV.2 35



Translation

• Translating is shifting an object to a new location, without
changing its size or shape.

•We’ll talk about translating in 2 dimensions, meaning in the x
and/or y directions.

•We need to know how much to translate (shift, move) the object
in each direction.

•We call these values ∆x and ∆y, respectively.

• To translate point (x, y) by ∆x units along the x axis and ∆y units
along the y axis we just use addition:

x′ = x + ∆x
y′ = y + ∆y
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• In matrix form:
 x′

y′

 =

 x
y

 +

 ∆x
∆y


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• Translation is often done in conjunction with other
transformations, which require matrix multiplication rather than
addition.

• As a result, we usually describe translation as:


x′

y′

1

 =


1 0 ∆x
0 1 ∆y
0 0 1




x
y
1


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• The translation is exactly the same as doing the addition:


x′

y′

1

 =


1 0 ∆x
0 1 ∆y
0 0 1




x
y
1



=


x× 1 + y× 0 + 1×∆x
x× 0 + y× 1 + 1×∆y
x× 0 + y× 0 + 1× 1



=


x + ∆x
y + ∆y
1


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An example of translation

• Given the rectangle in 2D space bounded by (12, 7) and (20, 10),
translate the rectangle so that the upper left corner is at (1, 2).

• Here is the original rectangle:
(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)
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• Translation is a one-step process, ending up here:
(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)
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• In order for the new upper left corner to end up at (1, 2), we first
calculate the ∆x and ∆y values necessary for the translation:

∆x = 1− x1
= 1− 12

= −11

∆y = 2− y1
= 2− 7

= −5

• After this translation we know the upper left corner will be at
(1, 2), but we have to apply the translation to the bottom right
corner to know where that ends up.
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• This gives:


x′

y′

1

 =


1 0 ∆x
0 1 ∆y
0 0 1




x
y
1



=


1 0 −11
0 1 −5
0 0 1




20
10
1



=


20 ∗ 1 + 10 ∗ 0 + 1 ∗ −11
20 ∗ 0 + 10 ∗ 1 + 1 ∗ −5
20 ∗ 0 + 10 ∗ 0 + 1 ∗ 1



=


9
5
1


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• This means that the translated rectangle is bounded by (1, 2) and
(9, 5)
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Scaling

• Scaling is changing the size of an object.

• This can be done uniformly, where the size of all dimensions
change by the same amount.

• Can also be done non-uniformly, where the size of each
dimension changes by a different amount.

• Again, we’ll talk about scaling in 2 dimensions, meaning in the x
and/or y dimensions
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• If sx and sy represent how much we want to scale the object in the
x and y dimensions, respectively, then the formulas are:

x′ = x× sx

y′ = y× sy
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• In matrix form:

 x′

y′

 =

 sx 0
0 sy


 x

y


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An example of scaling

• Given the rectangle in 2D space bounded by (12, 7) and (20, 10),
use scaling to increase the size of the rectangle threefold (×3),
keeping the location of its upper left corner the same.

• Here is the original rectangle:
(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)
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• This is a 3-step process.

• First, we translate the original rectangle back to the origin (0, 0):
(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)
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• This is done by first calculating the ∆x and ∆y values necessary
for the translation of the upper left corner:

∆x = 0− x1 = 0− 12 = −12
∆y = 0− y1 = 0− 7 = −7
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• Then we apply this translation to the bottom right corner:


x′

y′

1

 =


1 0 ∆x
0 1 ∆y
0 0 1




x
y
1



=


1 0 −12
0 1 −7
0 0 1




20
10
1



=


20× 1 + 10× 0 + 1×−12
20× 0 + 10× 1 + 1×−7
20× 0 + 10× 0 + 1× 1



=


8
3
1


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•With both corners fixed, we know what the new position of the
rectangle is.
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• Second, we perform the scaling on the rectangle at the origin:
(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)
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•We use the given scaling factor, sx = 3 and sy = 3.

• This is what happens to the lower right corner:

 x′

y′

 =

 sx 0
0 sy


 x

y



=

 3 0
0 3


 8

3



=

 8× 3 + 3× 0
8× 0 + 3× 3



=

 24
9


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• Since the top left corner is set to (0, 0), we don’t have to do
anything — if we do the multiplication, we will still end up with
(0, 0).
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• The third and final step is to translate the scaled rectangle from
the origin back to its original location, as shown in figure D,
where the upper left corner of the rectangle is in the original
place:

(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20)

(0,15)

(20,20)

(25,0) (30,0) (35,0)

• To do this, we just apply the opposite translation we did earlier,
using ∆x = 12 and ∆y = 7 on both sets of coordinates.
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Rotation

•We handle rotation by matrix multiplication as well.

• Rotation is turning an object about a particular point, without
changing the object’s size or shape

• Typically, rotation is computed about the origin

• So in order to rotate an object about one of its points, you first
have to translate the object so that that point is at the origin,
perform the rotation and then translate the object back to where
it came from.

• Here, we’ll talk about how to rotate about the origin
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• The amount of rotation is expressed in terms of an angle, θ

• The formula for rotating a point by θ about the origin is:

x′ = x.cos(θ)− y.sin(θ)
y′ = x.sin(θ) + y.cos(θ)
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•We get the formula by starting from a point (x, y) that we want to
rotate θ degrees:

θ

α

(x,y)

(x’,y’)

H

(x,0)

• If we drop a line from that point perpendicular to the x-axis,
intersecting at (x, 0), we get a right-angle triangle described by
the three points: (x, y), (x, 0) and (0, 0)
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• The angle between the two lines that meet at the origin, is α

• The rules of trigonometry tells us a few things about this
triangle:

cos(α) = x/H
sin(α) = y/H

Where H is the hypotenuse, the longest side in a right triangle; in
this case, the distance from the origin to the point (x, y)

• in other words:

x = H.cos(α)
y = H.sin(α)

or

H = cos(α)/x
H = sin(α)/y
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• we can do the same thing with the new, rotated point (x′, y′), by
dropping a perpendicular to the x-axis; the distance from the
origin to the new point stays the same (i.e., = H) and the angle
between the two lines that meet at the origin, is now α+ θ, where
θ is the angle of rotation.

• This gives us:

cos(α + θ) = x′/H
sin(α + θ) = y′/H

or

x′ = H.cos(α + θ)
y′ = H.sin(α + θ)
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• Here we need to use some trigonometric identities:

cos(α + θ) = cos(α).cos(θ)− sin(α).sin(θ)
sin(α + θ) = sin(α).cos(θ) + sin(θ).cos(α)

• Then we can subsitute back in:

x′ = H.(cos(α).cos(θ)− sin(α).sin(θ))
y′ = H.(sin(α).cos(θ) + sin(θ).cos(α))

which equals

x′ = H.cos(α).cos(θ)− H.sin(α).sin(θ)
y′ = H.sin(α).cos(θ) + H.sin(θ).cos(α)

cisc3120-fall2012-parsons-lectV.2 62



• Now we can refer back to our original equations about x and y
and do another substitution:

x′ = x.cos(θ)− y.sin(θ)
y′ = x.sin(θ) + y.cos(θ)

•We can represent these formulas using matrix multiplication:
 x′

y′

 =

 cos(θ) −sin(θ)
sin(θ) cos(θ)


 x

y


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An aside

• To be completely general, once we start rotating, we don’t just
care about the position of a figure, we also care about its
orientation.

– We need to track that α that was in the diagram above.

• So we expand our notion of co-ordinate to include orientation,
and the transformation becomes:


x′

y′

α

 =


cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
0 0 1




x
y
α



• But this is beyond our scope in this lecture.
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A rotation example
• Given the rectangle in 2D space bounded by (12, 7) and (20, 10),

rotate the rectangle by 90 deg, about its upper left corner

• Here’s the original rectangle:
(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)

• Rotation is a 3-step process, rather like scaling.
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• First, in order to perform rotation, we translate the original
rectangle back to the origin.

• This is done the same way as the first step in the scaling
example, giving us:

(0,0) (1,0) (5,0) (10,0) (15,0) (20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)
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• Second, we perform the rotation on the rectangle at the origin,
taking us to this position:

(20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)

(5,0) (10,0) (15,0)(0,0)(−3,0)
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•We use the given rotation factor, θ = 90 and the facts that
cos(90) = 0 and sin(90) = 1

• Thus the transformation is:

 x′

y′

 =

 cos(θ) −sin(θ)
sin(θ) cos(θ)


 x

y



=

 0 −1
1 0


 8

3



=

 0 ∗ 8 +−1 ∗ 3
1 ∗ 8 + 0 ∗ 3



=

 −3
8


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• The third and final step is to translate the scaled rectangle from
the origin back to its original location, as shown in figure D,
where the upper left corner of the rectangle is in the original
place: (12, 7).

• Here, we just apply the opposite translation we did earlier:
(20,0)

(0,1)

(0,5)

(0,10)

(0,20) (20,20)

(0,15)

(5,0) (10,0) (15,0)(0,0)(−3,0)

cisc3120-fall2012-parsons-lectV.2 69



• This means that the rotated rectangle is bounded by (12, 7) and
(9, 15)
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Other shapes

• Rectangles make for nice examples because they are easily
described with two points.

– Of course Java uses slightly different parameters, but they are
equivalent.

• To do our own transformations, we just do the same operations
on these (different) parameters.

• As you saw last time, other Java shapes are defined using
different sets of parameters.

• Similar caclulations on these parameters will achieve the
transformations
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More dimensions
• Basically we just have larger matrices.

• However, rotation gets quite a few extra parameters since we
now have three axes of rotation:

– Yaw
– Pitch
– Roll

as they are sometimes called.
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• Also known as:

– Pan
– Tilt
– Roll
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Double buffering

• The problem with drawing complex images is that the processor
might not be able to keep up with what is going on.

• Every repaint() needs the whole screen to be redrawn.

• See DrawImage for an example.

• Double buffering is a way to overcome the flicker we see.
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•We have paint() draw an image in an off-screen buffer while
displaying an image that we drew earlier.
• Then flip them.
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•When you use Swing components in Swing containers you get
double buffering by default.

• Not the case with AWT.
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• How can we get double buffering when it is not built in?

• Hold a copy of the current image.

• Let another method modify this image, and call repaint()
when it is done.

• See example of DoodlePad

cisc3120-fall2012-parsons-lectV.2 77



Using clipping to limit drawing

• The problem we saw with DragImage() is that repaint() is
drawing the whole component.

•We can limit the amount of work it needs to do.

• See DragImageWClipping

• Not as effective as double buffering.
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Animation

•With double buffering, animation is simple.

• Display one image.

• Create a second image off-screen.

•Make the object that does the image manipulation a Runnable.

• Run in in a thread.

• Have its run() method sleep between repaint()s
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• Constructor includes:

Thread t = new Thread(this);
t.start();

•Method myUpdateMethod() prepares the data for paint() to
use.
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• Run is:

public void run(){
try{
while(true){
myUpdatemethod();
repaint();
Thread.sleep(1000/24);

}
}
catch(InterruptedException e){}

}

• This updates the screen 24 times a second, fast enough to look
continuous.
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Working with images

• java.awt.image.BufferedImage lets you manipulate the
“inside” of an image directly.

• Basically an array of pixels, with information on color.

• Supports standard ways to handle image data, allowing you to
deal with RGB or HSV for example.

• There are a set of image filters which will generate new
BufferedImages from old ones.
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• Individual pixels are just large numbers.

• Here is how an ARGB pixel is represented:

• The “Alpha” part contains transparency information, R, G and B
are red, green and blue.
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• The operations are member of the class BufferedImageOp, for
example:

– AffineTrasnformOp: Scale, rotate or shear image:

x′ = a.x + b

is an affine transformation.
– ColorConvertOp: convert between color models.
– ConvolveOp: convolve the image.
– LookupOp: process using a lookup table.
– RescaleOp: change pixel values.

destination = op.filter(source, null)

or

op.filter(source, destination)
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• In addition to these filters, it is obviously possible to write
methods that directly manipulate the pixels.
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Summary

• This lecture rounded out our treatments of graphics.

– Much more to say, both about what Java contains, and what
the field of computer graphics covers.

•We looked at some basic computer graphics manipulations that
underpin all drawing operations.

•We also looked at some of the support that Java provides for
handling graphics.
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