4 ™
STIMULUS-RESPONSE AGENTS
N J
(" N
|Behaviour-based Al|
We can distinguish two approaches to Al
e Classic AL
- Symbolic representations;
— “Good Old Fashioned AI” (GOFAI).
e Behaviour-based Al:
— Representation-free;
— “Nouvelle AI”.
@32-&11—2003-parsor\s—lect03 y

Introduction

e This lecture will start looking at Al techniques.
e We will start with one that is relatively new, but also very simple.
e This kind of system is simple to program.

e It is also very suitable for your robotics projects.

@32—&;11—2003fparsonsflectOS y
4 N

Classical models are deliberative. They involve what we recognise
as thinking.

e Sense-Plan-Act:

— Sense the world and figure out where we are;
— Generate a plan to get where we want to go;
- Translate plan into actions.

e Iterate until goals are achieved.

e Need some kind of world model, notion of goal etc.

QSZ-fall—ZOOS-parsons-lectOS y

Behaviour-based approaches just act:

When you think on the field, you’ve automatically lost that
down. The time you should be thinking is during the course
of the week in practice. That’s when the light should go on.
When you get in the game, it’s all about reacting to what
you see.

(Albert Lewis, Oakland Raiders cornerback).

@3243ll—2003—parsnnsflect03 y
Example
The robot senses whether
the eight surrounding cells
arefreefor it to occupy
Boundary
N SEIE
S8 Sa
S71%(S
X
Solid —fF—T—
object
|
I
A robot starting here will go A robot starting here will
counterclockwise around the go clockwise around the
outside boundary of the object inside of the outer boundary
© 1998 Morgan Kaufmann Publishers

@32-fa11-2003-parsons-1ect03 B/

~
Hypothesis is:
e Most activity isn’t planned out; it is just reaction.
e Complex behaviours are just combinations of simple behaviours.
— If we can string together enough simple behaviours we will
get complex behavior.
e Can get further with this “bottom-up” approach than with the
classical approach.
— An artificial cockroach that works is better than an artificial
human that doesn't.
e Elephants don’t play chess.
@32—&;11—2003fparsonsflectOS y
4 N
e Task:
- Go to a cell adjacent to a boundary or object and follow its
perimeter.
e Sensors:
— Can sense if adjacent cells are occupied.
— Each s; has value 0 when that cell can be occupied. 1
otherwise.
e Thus at X, the sensors have value:
(0’ 0) 0) 05 05 0)]" O)
o In general we write S = (s1, $3, 83, 84, S5, S6, 7, S8)
Q32-fall-2003-parsons-lectOS y

e Actions:
- north move up in grid.
- east move right in grid.
- south move down in grid.
— west move left in grid.
e We write the set of all actions as A.

e These work provided the cell into which the robot tries to move
is free.

e The task is then to come up with a function from a set of s; to
some action:

f:Sm A
@32—&1ll—2003—parsonsflect03 y
4 N

e The split between action and perception is arbitrary.
e Could make everything perception or everything action.

e The split is driven by the feature vector (just change the action
function to get a different behaviour).

e Once the split is decided, we have to:

— Map sensor data to feature vector;
— Map feature vector to actions.

e Thus we have split the function f above into:
g:S—X

and
h: X— A

/ N
[Perception & Action] L
In general, the situation is:
Designer’s intended
meanings:
Feature Next to wall
vector, X /
/ Inacorner
Sensory Perceptual Action "
input processing function Action

(LTI TTTTIRRI-=]e]

© 1998 Morgan Kaufmann Publishers

Features can be numerical, categorical, or binary-valued.

@32-fa11-2003-parsons-1ect03 1y

@32—&;11—2003fparsonsflectOS y
4 N

o There are 256 different feature vectors.

e For boundary following, the following are the interesting cases:

X1 X2 X3 X4

In each diagram, the indicated feature has value 1 if and only if at least one of the shaded
cells is not free.

© 1998 Morgan Kaufman Publishers
e We can then define the feature vector in terms of z;.
e This gives us a way of defining g.

e Of course, in real life, identifying features is not so easy...

Q32-fall—2003-parsons-lectOS 9

e Now we have to define h.

o If all the z; are 0, then the robot can move in any direction.

e We will make it go north if this is the case.
e Otherwise there is a boundary to follow.
e We follow it by:

—If z; = 1 and 25 = 0 then east

—If 23 = 1 and z3 = 0 then south

—If 23 = 1 and z4 = 0 then west

—If x4 = 1 and x; = 0 then north

@32—&1ll—2003—parsonsflect03

/

[Production systems|

e How do we represent the action function?

e One convenient representation is as a production system, a
collection of production rules.

e Each rule is written as:
c; — a;
with a condition part and an action part.
e A production system is a list of such rules:

c1 — ai
Cy — Q9

Cp — Qp

@32-fa11-2003-parsons-1ect03

e We can write these conditions as Boolean expressions.
o The condition for the robot to move east is:
Xr1.T3

e And the condition for it to move north is:

T1.22.23.T4 + L4.T1

e We can also express the z; as Boolean combinations of the sensor

signals:
T4 = S1+ Sg
@32—&;11—2003fparsonsflectOS y
4 N

e The condition can be any binary-valued function of the
appropriate feature vector.

e For our example it is just a simple Boolean function.

e To select an action, we look through the rules until we find a ¢;
which evaluates to 1.

e Then we execute the associated a;.

e The ag; can be a primitive action, a set of actions, or a call to
another production system.

e Usually the last rule in the system has condition 1 (ie. it is an
“else” production).

Q32-fall—2003-parsons-lectOS y

e Thus, for our example, we could have the production system:
r4T7 — north
x3T5 — west
ToT3 — south
xr1Ty — east
1 — north

e This system will then run forever.

e It is what we call a durative procedure.

@32—&1ll—2003—parsonsflect03 w
4 N

e There are three points to make about this.

e First, in goal-achieving production systems, the topmost rule
identifies the situation we are aiming for.

e Once this is acheived, we need do nothing more.

e Second, conditions and actions lower down the production
system lead towards the achievement of the topmost condition.

e Indeed, action a; is intended to bring about ¢; where j < i.

e Third, we can build up a hierarchy of production systems, where
systems lower in the hierarchy move the robot towards meeting
the conditions of productions in systems higher up.

e This gives us a means of procedural abstraction.

e Another kind of production system will have an overall goal.

e Imagine that we want the robot to follow the boundary until it
finds a north-east corner (like the top-left corner in the example)
and then stop there.

e We can define another item in the feature vector:
T5 = $152535455565758
and then write the production system:
5 — nil
1 — b—f

where nil is an action which does nothing, and b-fis a call to the
previous production system.

@32-fa11-2003-parsons-1ect03 19

@32—&;11—2003fparsonsflectOS y
4 N

o Systems of rules like this are call teleo-reactive (T-R) programs.

e Every action in a T-R program works towards the achievement
of a condition higher in the program.

e It is typically easy to write such programs.
e T-R programs are also very robust.

e Even in the face of faulty sensor readings, carefully constructed
T-R programs will get back on track.

Q32-fall—2003-parsons-lectOS y

|Subsumption Architecture|

e Another approach to combining simple sensory-driven
behaviour:

Sensory
signals

—»‘ Perception }—»‘ Action computation

—»‘ Perception }—»‘ Action computation }—»

Corridor traveling

—»‘ Perception }—»‘ Action computation }—»

Obstacle avoidance

Action

—»‘ Perception }—»‘ Action computation }—»@—»

Wandering
© 1998 Morgan Kaufman Publishers
\gis32-fall-2003-parsons-lect03 21

e Subsumption architecture started with Brooks.

e Idea is that:
— Build basic behaviour;
— When that is refined, add a subsuming behaviour;
— When that is refined, add another;

e So far as I know, the maximum “stack height” is not *that* high.

e However, there are other ways of making the approach more
sophisticated.

e Each module receives sensory information directly from the
world.

o If the sensory inputs match the preconditions of a module, it
executes.

e Modules can subsume each other (in the picture upper modules
can subsume lower ones).

e When module i subsumes j, then if i’s precondition is met, the
program of i replaces that of j.

e So in the example:

— The robot wanders until it has to avoid an obstacle;
— Avoids an obstacle until it is travelling in a corridor.

@32-fa11-2003-parsons-1ect03 23/

@32—&;11—2003fparsonsflectOS y
4 N

e We can make the approach more flexible:

— Rather than having a fixed set of behaviours, construct a task
specific set.
— (Plan, but in terms of behaviours not actions.)
e We can improve on subsumption.
— Rather than having one behaviour replace another, merge
behaviours.
— (Imagine being able to do a weighted sum of actions.)

e Both these features are available in Saffiotti’s THINKING CAP.

Q32-fall—2003-parsons-lectOS y

e How could we program this?
o As follows:

i f <sone condition>
t hen <sone action>
el se if <another condition>
t hen <anot her action>
else...

e Here actions higher up in the compound if statement take
precedence.

@32—&1ll—2003—parsonsflect03

23/

Summary

o This lecture introduced stimulus-response agents.

e These do not think; they just act.

e We looked at two approaches to implementing such systems.

— Production rule systems.
— Subsumption architecture.

@32—&;11—2003fparsonsflectOS

