
HEURISTIC SEARCH I



Recap

The last lecture introduced

� Basic problem solving techniqus:

– Breadth-first search
– Depth-first search

� Breadth-first search is complete but expensive.

� Depth-first search is cheap but incomplete

� Can’t we do better than this?

� That is what this lecture is about

cis32-fall2003-parsons-lect08 2



Overview

Aims of this lecture:

� show how basic search (depth 1st, breadth 1st) can be improved;

� introduce:

– depth limited search;
– iterative deepening.

� show that even with such improvements, search is hopelessly
unrealistic for real problems.

cis32-fall2003-parsons-lect08 3



Algorithmic Improvements

� Are then any algorithmic improvements we can make to basic
search algorithms that will improve overall performance?

� Try to get optimality and completeness of breadth 1st search with
space efficiency of depth 1st.

� Not too much to be done about time complexity :-(

cis32-fall2003-parsons-lect08 4



Depth Limited Search

� Depth first search has some desirable properties — space
complexity.

� But if wrong branch expanded (with no solution on it), then it
won’t terminate.

� Idea: introduce a depth limit on branches to be expanded.

� Don’t expand a branch below this depth.

cis32-fall2003-parsons-lect08 5



� General algorithm for depth limited search:

depth limit = max depth to search to;
agenda = initial state;
while agenda not empty do

take node from front of agenda;
new nodes = apply operations to node;
if goal state in new nodes then {

return solution;
}
if depth(node) < depth limit then {

add new nodes to front of agenda;
}

}

cis32-fall2003-parsons-lect08 6



� For the 8-puzzle setup as:

2

7

1 3

5

4

6

8

6 3

457

8

1 2

cis32-fall2003-parsons-lect08 7



� . . . the search will be as follows:

cis32-fall2003-parsons-lect08 8



Iterative Deepening

� Unfortunately, if we choose a max depth for d.l.s. such that
shortest solution is longer, d.l.s. is not complete.

� Iterative deepning an ingenious complete version of it.

� Basic idea is:

– do d.l.s. for depth 1; if solution found, return it;
– otherwise do d.l.s. for depth n; if solution found, return it;
– otherwise, . . .

� So we repeat d.l.s. for all depths until solution found.

cis32-fall2003-parsons-lect08 9



� General algorithm for depth limited search:

depth limit = 1;
repeat {

result = depth_limited_search(
max depth = depth limit;
agenda = initial node;

);
if result contains goal then {

return result;
}
depth limit = depth limit + 1;

} until false; /* i.e., forever */

� Calls d.l.s. as subroutine.

cis32-fall2003-parsons-lect08 10



� Note that in iterative deepening, we re-generate nodes on the fly.

� Each time we do call on depth limited search for depth � , we
need to regenerate the tree to depth � � � .

� Isn’t this inefficient?

� Tradeoff time for memory.

� In general we might take a little more time, but we save a lot of
memory.

cis32-fall2003-parsons-lect08 11



� Example: Suppose � � � � and � � � .

� Breadth first search would require:

– examining � � � � � � � nodes, and
– memory requirement of � � � � � � � nodes.

� Iterative deepening for same problem:

– �� � ��� �	 nodes to be searched, BUT
– memory requirement only � � nodes.

� Takes 11% longer in this case.

cis32-fall2003-parsons-lect08 12



� For the 8-puzzle setup as:

2

7

1 3

5

4

6

8

6 3

457

8

1 2

cis32-fall2003-parsons-lect08 13



� . . . an iterative deepening search might be as follows:

cis32-fall2003-parsons-lect08 14



Bi-directional Search

� Suppose we search from the goal state backwards as well as from
initial state forwards.

� Involves determining predecessor nodes to goal, and then looking
at predecessor nodes to this, . . .

� Rather than doing one search of ��� , we do two �� ��� searches.

� Much more efficient.

cis32-fall2003-parsons-lect08 15



� Example:
Suppose � � � � , � � 	 .
Breadth first search will examine nodes.
Bidirectional search will examine nodes.

� Can combine different search strategies in different directions.

� For large � , is still impractical!

cis32-fall2003-parsons-lect08 16



� For the 8-puzzle setup as:

2

7

1 3

5

4

6

8

6 3

457

8

1 2

cis32-fall2003-parsons-lect08 17



� . . . a bi-directional search might be as follows:

cis32-fall2003-parsons-lect08 18



Summary

� This lecture has looked at some more efficient techniques than
breadth first and depth first search.

– depth-limited search;
– iterative-deepening search; and
– bidirectional search.

� These all improve on depth-first and breadth-first search.

� However, all fail for big enough problems (too large state space).

� Next lecture, we will look at approaches that cut down the size
of the state-space that is searched.

cis32-fall2003-parsons-lect08 19


