
HEURISTIC SEARCH II



Recap

The last lectures introduced

� More advanced problem solving techniques:

– Depth limited search
– Iterative deepening
– Bidirectional search

� These improved on basic techniques like breadth-first and
depth-first search.

� However, they still aren’t powerful enough to give solutions for
realistic problems.

� Are there more improvements we can make?

cis32-fall2003-parsons-lect09 2



Overview

Aims of this lecture:

� To show how applying some knowledge of the problem can help.

� Introduce heuristics — rules of thumb.

� Introduce heuristic search: guided by rules of thumb which help
to decide which node to expand:

– best-first search;
– greedy search;
– A* search.

cis32-fall2003-parsons-lect09 3



Heuristic (Informed) Search

� Whatever search technique we use, exponential time complexity.

� Tweaks to the algorithm will not reduce this to polynomial.

� We need problem specific knowledge to guide the search.

� Simplest form of problem specific knowledge is heuristic.

� Usual implementation in search is via an evaluation function
which indicates desirability of expanding node.

cis32-fall2003-parsons-lect09 4



Uniform Cost Search

� Recall we have a path cost function,
� �� ��� �� �

which gives cost to each path.

� Why not expand the cheapest path first?

� Intuition: cheapest is likely to be best!

cis32-fall2003-parsons-lect09 5



� General algorithm for uniform search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
g(node) = min { g(n) | n in agenda}

new nodes = apply operations to node;
if goal state in new nodes then {

return solution;
}
else add new nodes to agenda

}

cis32-fall2003-parsons-lect09 6



� Uniform cost search guaranteed to find cheapest solution
assuming path costs grow monotonically.

� In other words, adding another step to the solution makes it
more costly.

� If path costs don’t grow monotonically, then exhaustive search is
required.

cis32-fall2003-parsons-lect09 7



� Once again we can illustrate this on the 8-puzzle:

2

7

1 3

5

4

6

8

7 5

1 2

8 6 3

4

� For this set up. . .

cis32-fall2003-parsons-lect09 8



� . . . the search will be as follows:

cis32-fall2003-parsons-lect09 9



Greedy Search

� Most heuristics estimate cost of cheapest path from node to solution.

� We have a heuristic function,

� �� ��� �� �

which estimates the distance from the node to the goal.

� Example: In route finding, heuristic might be straight line
distance from node to destination.

� Heuristic is said to be admissible if it never overestimates cheapest
solution.
Admissible = optimistic.

� Greedy search involves expanding node with cheapest expected cost
to solution.

cis32-fall2003-parsons-lect09 10



� General algorithm for greedy search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
h(node) = min { h(n) | n in agenda}

new nodes = apply operations to node;
if goal state in new nodes then {

return solution;
}
else add new nodes to agenda

}

cis32-fall2003-parsons-lect09 11



� Greedy search finds solutions quickly.

� Doesn’t always find best.

� Susceptible to false starts.

� Only looking at current node. Ignores past!

� Short sighted.

cis32-fall2003-parsons-lect09 12



� For the 8-puzzle:

2

7

1 3

5

4

6

8

7 5

1 2

8 6 3

4

a good heuristic is the Manhattan blocks’ distance

� Can also use the “tiles out of place” heuristic.

cis32-fall2003-parsons-lect09 13



� Using this, the search will be as follows:

cis32-fall2003-parsons-lect09 14



A* Search

� A* is very efficient search strategy.

� Basic idea is to combine

uniform cost search
and

greedy search.

� We look at the cost so far and the estimated cost to goal.

� Gives heuristic � :

� ��� ��� � ��� ��� � ��� �
where

– � � � � is path cost of� ;
– � � � � is expected cost of cheapest solution from� .

� Aims to mimimise overall cost.

cis32-fall2003-parsons-lect09 15



� General algorithm for A* search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
f(node) = min { f(n) | n in agenda}
where f(n) = g(n) + h(n)

new nodes = apply operations to node;
if goal state in new nodes then {

return solution;
}
else add new nodes to agenda

}

cis32-fall2003-parsons-lect09 16



� Considering the 8-puzzle (for the last time :-):

2

7

1 3

5

4

6

8

7 5

1 2

8 6 3

4

� We combine the Manhattan blocks’ distance heuristic function,
with a path cost which counts the number of moves.

cis32-fall2003-parsons-lect09 17



� Using this, the search will be as follows:

cis32-fall2003-parsons-lect09 18



Summary

� This lecture has looked at some techniques for refining the
search space:

� When these work they explore just the relevant part of the search
space.

� There are also techniques that go further than those we have
studied.

– iterative deepening A* search

� There are two directions we will take from here:

– Adversarial search
– Learning the state space.
– Adding in more knowledge about the domain.

cis32-fall2003-parsons-lect09 19


