
KNOWLEDGE REPRESENTATION



Introduction

� Although search is a “universal weak method” for problem
solving. . .

� . . . real problems require methods with more edge.

� One way to provide this is to use explicit knowledge.

� This means we need to represent knowledge explicitly.

� This lecture introduce the need for explicit knowledge
representation. . .

� . . . and describes rules as one particular means of knowledge
representation.

cis32-fall2003-parsons-lect13 2



The Need for Knowledge

� “Weak” (search-based) problem-solving does not scale to real
problems.

� To succeed, problem solving needs domain specific knowledge.

� In search, knowledge = heuristic.

� But heuristics are implicit knowledge — hard to understand,
modify, . . .

� In mid 1970s, attention shifted to explicit knowledge
representation.

cis32-fall2003-parsons-lect13 3



The Knowledge Principle

� Ed Feigenbaum:

“. . . power exhibited . . . is primarily a consequence of the
specialist knowledge employed by the agent and only very
secondarily related to . . . the power of the [computer]”
“Our agents must be knowledge rich, even if they are
methods poor.”

cis32-fall2003-parsons-lect13 4



The Role of Knowledge

� Knowledge about a domain allows problem solving to be
focussed — not necessary to exhaustively search.

� Explicit representations of knowledge allow a domain expert to
understand the knowledge a system has, add to it, edit it, and so
on.
Knowledge engineering.

� Comparatively simple algorithms can be used to reason with the
knowledge and derive new knowledge.

cis32-fall2003-parsons-lect13 5



Knowledge Representation

� Question: How do we represent knowledge in a form amenable
to computer manipulation?

� Led to an area known as knowledge representation.

� Desirable features of KR scheme:

– representational adequacy;
– inferential adequacy;
– inferential efficiency;
– well-defined syntax & semantics;
– naturalness.

cis32-fall2003-parsons-lect13 6



Representational Adequacy

� A KR scheme must be able to actually represent the knowledge
appropriate to our problem.

� Some KR schemes are better at some sorts of knowledge than
others.

� There is no one ideal KR scheme!

cis32-fall2003-parsons-lect13 7



Inferential Adequacy

� KR scheme must allow us to make new inferences from old
knowledge.

� It must make inferences that are:

– sound — the new knowledge actually does follow from the
old knowledge;

– complete — it should make all the right inferences.

� Soundness usually easy; completeness very hard!

cis32-fall2003-parsons-lect13 8



� Example. Given knowledge. . .
Michael is a man.
All men are mortal.

the inference
Simon is mortal.

is not sound, whereas
Michael is mortal.

is sound.

cis32-fall2003-parsons-lect13 9



Inferential Efficiency

� A KR scheme should be tractable — make inferences in
reasonable (polynomial) time.

� Unfortunately, any KR scheme with interesting expressive power is
not going to be efficient.

� Often, the more general a KR scheme is, the less efficient it is.

� Use KR schemes tailored to problem domain — less general, but
more efficient.

� (Any KR scheme with expressive power = first-order logic is
undecidable.)

cis32-fall2003-parsons-lect13 10



Syntax and Semantics

� It should be possible to tell:

– whether any construction is “grammatically correct”.
– how to read any particular construction — no ambiguity.

Thus KR scheme should have well defined syntax.

� It should be possible to precisely determine, for any given
construction, exactly what its meaning is.
Thus KR scheme should have well defined semantics.

� Syntax is easy; semantics is hard!

cis32-fall2003-parsons-lect13 11



Naturalness

� Ideally, KR scheme should closely correspond to our way of
thinking, reading, and writing.

� Allow knowledge engineer to read & check knowledge base.

� Again, more general a KR scheme is, less likely it is to be readable
& understandable.

cis32-fall2003-parsons-lect13 12



Rules

� Knowledge is specified as a collection of production rules.

� Each rule has the form
�� �� �� �� � � � � � � �� �

which may be read
if �� �� �� �� � then � � � �� � .

� The �� �� �� �� � (antecedent) is a pattern.

� The action (consequent) is an operation to be performed if rule
fires.

cis32-fall2003-parsons-lect13 13



� A rule-based (production) system has a working memory of facts
against which �� �� �� �� � is matched.

� Action is often a fact to be added to working memory.

� Rule fires if match is successful; Mechanism that fires rules is
inference engine.

Rule Base

Inference
Engine

Working
Memory

User

facts

facts

facts
rules

cis32-fall2003-parsons-lect13 14



� Example rule base:

R3: IF animal has feathers
THEN animal is a bird

R4: IF animal is a bird
THEN animal can fly

R5: IF animal can fly
THEN animal is not scared of heights

cis32-fall2003-parsons-lect13 15



Relation to search

� Using rules can be thought of as just another form of search.

� Facts are states.

� Working memory is the agenda.

� Rules are the operations on states.

� This suggests that there are schemes for applying rules which are
similar to breadth-first search etc.

� We will look at these next.

cis32-fall2003-parsons-lect13 16



� Another example:

R1: IF animal has hair
THEN animal is a mammal

R2: IF animal gives milk
THEN animal is mammal

R3: IF animal has feathers
THEN animal is a bird

R4: IF animal can fly
AND animal lays eggs
THEN animal is bird

R5: IF animal eats meat
THEN animal is carnivore

cis32-fall2003-parsons-lect13 17



cis32-fall2003-parsons-lect13 18



R6: IF animal has pointed teeth
AND animal has claws
THEN animal is carnivore

R7: IF animal is mammal
AND animal has hoofs
THEN animal is ungulate

R8: IF animal is mammal
AND animal chews cud
THEN animal is ungulate

R9: IF animal is mammal
AND animal is carnivore
AND animal has tawny colour
AND animal has dark spots
THEN animal is cheetah

cis32-fall2003-parsons-lect13 19



R10: IF animal is mammal
AND animal is carnivore
AND animal has tawny colour
AND animal has black stripes
THEN animal is tiger

R11: IF animal is ungulate
AND animal has long legs
AND animal has dark spots
THEN animal is giraffe

R12: IF animal is ungulate
AND animal has black stripes
THEN animal is zebra

cis32-fall2003-parsons-lect13 20



R14: IF animal is bird
AND animal does not fly
AND animal has long legs
AND animal has long neck
THEN animal is ostrich

R14: IF animal is bird
AND animal does not fly
AND animal can swim
AND animal is black and white
THEN animal is penguin

R15: IF animal is bird
AND animal is good flyer
THEN animal is albatross

cis32-fall2003-parsons-lect13 21



Forward Chaining

� Given a set of rules like these, there are essentially two ways we
can use them to generate new knowledge:

– forward chaining — data driven;
– backward chaining — goal driven.

� In what follows. . .
let (c,a) be a rule.
let fires(c,WM) be true if condition c fires against working
memory WM.

� Forward chaining algorithm is as follows.

cis32-fall2003-parsons-lect13 22



var WM : set of facts
var goal : goal we are searching for
var RuleBase : set of rules
var firedFlag : BOOLEAN
repeat

firedFlag = FALSE
for each (c,a) in RuleBase do
if fires(c,WM) then

if a == goal then return success
end-if
add a to WM
set firedFlag to TRUE

end-if
end-for

until firedFlag = FALSE
return failure

cis32-fall2003-parsons-lect13 23



� Example. Suppose

WM = { animal has hair,
animal eats meat,
animal has tawny colour,
animal has dark spots}

and goal is

animal is cheetah

cis32-fall2003-parsons-lect13 24



� Note that all rules which can fire do fire.

� Can be inefficient — lead to spurious rules firing, unfocussed
problem solving (cf. breadth-first search).

� Set of rules that can fire known as conflict set.

� Decision about which rule to fire — conflict resolution.

� Number of strategies possible (cf. heuristic search):

– most specific rule first (with most antecedents).
– most recent first;
– user specified priorities.

cis32-fall2003-parsons-lect13 25



Meta Knowledge

� Another solution: meta-knowledge, (i.e., knowledge about knowledge)
to guide search.

IF
conflict set contains any rule (c,a) such that
a = ‘‘animal is mammal’’

THEN
fire (c,a)

� So meta-knowledge encodes knowledge about how to guide
search for solution.

� Explicitly coded in the form of rules, as with “object level”
knowledge.

cis32-fall2003-parsons-lect13 26



Backward Chaining

� Backward chaining means reasoning from goals back to facts.

� The idea is that this focusses the search.

� Thinking of the rules as building a tree connecting facts, . . .

� . . . in backward chaining, every path ends with the goal.

� Since, in general, there are more initial facts that goals, . . .

� . . . more of the paths built will be solutions than in forward
chaining (we hope :-).

cis32-fall2003-parsons-lect13 27



var WM : set of facts
var RuleBase : set of rules
var firedFlag : BOOLEAN
function prove(g : goal)

if g in WM then
return TRUE

if there is some (c,a) in WM
such that a == g then

for each precondition p in c do
if not prove(p,WM) then return FALSE

return TRUE
else

return FALSE
end-function

cis32-fall2003-parsons-lect13 28



� Example. Suppose

WM = { animal has hair,
animal eats meat,
animal has tawny colour,
animal has dark spots}

� and goal is

animal is cheetah

cis32-fall2003-parsons-lect13 29



Summary

� This lecture has introduced the idea of knowledge
representation, and some of the requirements of a knowledge
representation scheme.

� We also looked at how production rules might be used for
knowledge representation . . .

� . . . and looked at how both forward and backward chaining are
used in rule-based systems.

� Next lecture will look expert systems as a application of
rule-based systems.

cis32-fall2003-parsons-lect13 30


