
PLANNING

1 What is Planning?

� Key problem facing agent is deciding what to do.

� We want agents to be taskable: give them goals to achieve, have
them decide for themselves how to achieve them.

� Basic idea is to give an agent:

– representation of goal to achieve;
– knowledge about what actions it can perform; and
– knowledge about state of the world;

and to have it generate a plan to achieve the goal.

� Essentially, this is

automatic programming.

cis32-fall2003-parsons-lect20 2

Planner

goal environment
state of

possible actions

plan to achieve goal

cis32-fall2003-parsons-lect20 3

� Question: How do we represent. . .

– goal to be achieved;
– state of environment;
– actions available to agent;
– plan itself.

� We show how all this can be done in first-order logic. . .

cis32-fall2003-parsons-lect20 4

� We’ll illustrate the techniques with reference to the blocks world.

� Contains a robot arm, 3 blocks (A, B and C) of equal size, and a
table-top.

� Initial state:

A

B C

cis32-fall2003-parsons-lect20 5

� To represent this environment, need an ontology.

�� ��� � � � obj� on top of obj �

�� � 	
 �� ��� � obj� is on the table

 �� 	� ��� � nothing is on top of obj�

� � ��� � � ��� � arm is holding�

cis32-fall2003-parsons-lect20 6

� Here is a FOL representation of the blocks world described
above:

 �� 	� ��� �

�� ��� ��� �

�� � 	
 �� �� �

�� � 	
 �� � �

 �� 	� � �

� Use the closed world assumption: anything not stated is assumed
to be false.

cis32-fall2003-parsons-lect20 7

� A goal is represented as a FOL formula.

� Here is a goal:
�� � 	
 �� ��� � �� � 	
 �� �� � �� � 	
 �� � �

� Which corresponds to the state:

B CA

� Actions are represented using a technique that was developed in
the STRIPS planner.

cis32-fall2003-parsons-lect20 8

� Each action has:

– a name
which may have arguments;

– a pre-condition list
list of facts which must be true for action to be executed;

– a delete list
list of facts that are no longer true after action is performed;

– an add list
list of facts made true by executing the action.

Each of these may contain variables.

cis32-fall2003-parsons-lect20 9

� Example 1:
The stack action occurs when the robot arm places the object� it
is holding is placed on top of object � .

�� 	� � � � � � �
pre �� 	� � � ��� � � � �� � � ��� �

del �� 	� � � ��� � � � �� � � ��� �

add � � �� � �� � � �� ��� � � �

cis32-fall2003-parsons-lect20 10

� Example 2:
The unstack action occurs when the robot arm picks an object�

up from on top of another object � .

�� �� 	� � ��� � � �
pre �� ��� � � � � �� 	� ��� �� � � �� � �� �

del �� ��� � � � � � � �� � �� �
add � � � �� � � ��� �� �� 	� � � �

Stack and UnStack are inverses of one-another.

cis32-fall2003-parsons-lect20 11

� Example 3:
The pickup action occurs when the arm picks up an object� from
the table.

�� � �� � � � �

pre �� 	� ��� �� �� � 	
 �� ��� �� � � �� � �� �

del �� � 	
 �� ��� �� � � �� � �� �

add � � � �� � � ��� �

� Example 4:
The putdown action occurs when the arm places the object� onto
the table.

� � � � �� � � � �

pre � � ��� � � ��� �

del � � ��� � � ��� �

add � � � �� � � ��� �� � � �� � �� �

cis32-fall2003-parsons-lect20 12

� What is a plan?
A sequence (list) of actions, with variables replaced by constants.

� So, to get from:

A

B C
to

B

C

A

cis32-fall2003-parsons-lect20 13

� We need the set of actions:

�� �� 	� � ��� �

� � � � �� � ��� �

�� � �� � �� �

�� 	� � �� � �

�� � �� � ��� �

�� 	� � ��� �� �

cis32-fall2003-parsons-lect20 14

� In “real life”, plans contain conditionals (IF .. THEN...) and
loops (WHILE... DO...), but most simple planners cannot
handle such constructs — they construct linear plans.

� Simplest approach to planning: means-ends analysis.

� Involves backward chaining from goal to original state.

� Start by finding an action that has goal as post-condition.
Assume this is the last action in plan.

� Then figure out what the previous state would have been.
Try to find action that has this state as post-condition.

� Recurse until we end up (hopefully!) in original state.

cis32-fall2003-parsons-lect20 15

function � � 	� (

� : WorldDesc, // initial env state

� : Goal, // goal to be achieved

� : Plan, // plan so far

� : set of actions // actions available)
1. if � ��� � then
2. return �

3. else
4. choose 	 in � such that
5. 	 � � � 	 � ��� � and
6. � � � � 	 �� ��� �

7. set � � � � � � 	 �

8. append 	 to �

9. return � � 	� �� � � � � � � �

cis32-fall2003-parsons-lect20 16

� How does this work on the previous example?

cis32-fall2003-parsons-lect20 17

� This algorithm not guaranteed to find the plan. . .

� . . . but it is sound: If it finds the plan is correct.

� Some problems:

– negative goals;
– maintenance goals;
– conditionals & loops;
– exponential search space;
– logical consequence tests;

cis32-fall2003-parsons-lect20 18

The Frame Problem

� A general problem with representing properties of actions:

How do we know exactly what changes as the result of
performing an action?

If I pick up a block, does my hair colour stay the same?

� One solution is to write frame axioms.
Here is a frame axiom, which states that SP’s hair colour is the
same in all the situations ��� that result from performing

�� � �� � ��� � in situation � as it is in � .

� � � �
� � � � �� �� � � � � �� � �� � ��� � � � � � �
� �

� � � � � � � � � � � � � � � � � �
� �

cis32-fall2003-parsons-lect20 19

� Stating frame axioms in this way is unfeasible for real problems.

� (Think of all the things that we would have to state in order to
cover all the possible frame axioms).

� STRIPS solves this problem by assuming that everything not
explicitly stated to have changed remains unchanged.

� We will revisit this problem in a few lectures’ time.

� It connects with the general problem of handling incomplete
information, and non-monotonic reasoning.

cis32-fall2003-parsons-lect20 20

Sussman’s Anomaly

� Consider we have the following initial state and goal state:

B C

A

to

B

C

A

� What operations will be in the plan?

cis32-fall2003-parsons-lect20 21

� Clearly we need to �� 	� � B on C at some point, and we also need
to �� �� 	� � A from and �� 	� � it on B.

� Which operation goes first?

� Obviously we need to do the �� �� 	� � first, and the �� 	� � � on

 , but the planner has no way of knowing this.

� It also has no way of “undoing” a partial plan if it leads into a
dead end.

� So if it chooses to �� 	� � ��� � � after the �� �� 	� � , it is sunk.

� This is a big problem with linear planners

� How could we modify our planning algorithm?

cis32-fall2003-parsons-lect20 22

� Modify the middle of the algorithm to be:

1. if � ��� � then
2. return �

3. else
4. choose 	 in � such that
5. 	 � � � 	 � ��� � and
6. � � � � 	 �� ��� �

6a. � � � � �

 � � � 	 � � � 	 � � � � � � 	 � �� � �� � � � � 	� �

7. set � � � � � � 	 �

8. append 	 to �

9. return � � 	� �� � � � � � � �

cis32-fall2003-parsons-lect20 23

Partial Order Planning

� So we check before adding an action to the plan that it doesn’t
mess up the rest of the plan.

� The problem is that in this recursive process, we don’t know
what the rest of the plan is.

� We also have little idea which things will clobber what things.

� We need to do two things:

– Add information to the plan representation.
– Think about plans in a different way.

cis32-fall2003-parsons-lect20 24

� Planning can be though of as a search problem.

� As we have viewed it so far, it is a search through a space of
possible situations.

� We have a start situation and an end situation, and each
operation takes us from one situation to another.

� We can also think of it as a search through a space of possible
plans.

� Each operation added then reduces the space of possible plans in
which the plan we are constructing can lie.

� In the middle of planning we have a partial plan with some steps
filled in with operations, and other steps still to be filled in.

cis32-fall2003-parsons-lect20 25

� What we do is to instantiate this partial plan step by step.

� But the crucial thing is that we don’t have to put the steps in a
particular order.

� Thus before adding a step we can check that it doesn’t clobber
other steps.

� To guide the way we put plans together, we have information
about which steps come before which other steps.

� This is the extra information we have to add.

� We also record all the partial plans.

� Then, if we find that adding a new step clobbers some step
which currently comes later in the plan, we can backtrack and try
and find a different ordering.

cis32-fall2003-parsons-lect20 26

Planning and Acting

� How do we fit in carrying out actions with building plans?

� The most naive view is:

1. Build plan
2. Execute plan

� This is fine if the plan is guaranteed to succeed.

� If not, we may find we have got to the end of the plan and not
achieved the goal.

cis32-fall2003-parsons-lect20 27

� So we can modify the sequence:

1. Build plan
2. Execute plan
3. Check if plan succeeded
4. If yes, hurrah
5. Else, go back to 1.

� This kind of process is sound, it will get to the goal eventually,
but it is wasteful.

� Actions typically cost, so we want to minimise the number of
useless actions we carry out.

cis32-fall2003-parsons-lect20 28

� So we check if actions have succeeded:

1. Build plan
2. Execute action.
3. Check if action succeeded
4. If yes, go back to 2.
5. Else, go back to 1.

� This approach has its own costs—checking that an action has
succeeded can be hard.

� It also only covers the last action.

cis32-fall2003-parsons-lect20 29

� What we really want to do is to check that the plan will still
work.

� So we actually want:

1. Build plan
2. Execute action.
3. Check if plan will still achieve goal
4. If yes, go back to 2.
5. Else, go back to 1.

� This checking is even harder, especially if we want to do it well.

� As we will see next lecture, what we really need is a policy—a
plan that tells us what to do in all possible cases.

cis32-fall2003-parsons-lect20 30

Summary

� This lecture has looked at planning.

� We looked mainly at a logical view of planning, using STRIPS
operators.

� We also discussed the frame problem, and Sussman’s anomaly.

� Sussman’s anomaly motivated some thoughts about
partial-order planning.

� Thinking about actions that can fail suggested we need to think
of plans as more than just linear sequences of actions.

cis32-fall2003-parsons-lect20 31

