
ARTIFICIAL INTELLIGENCE & AGENTS

Brief History of AI

1943–56:

• McCulloch & Pitts (1943)
artificial neural net — proved equivalent to Turing machine;

• Shannon, Turing (1950)
chess playing programs

• Marvin Minsky (1951)
first neural net computer — SNARC

• Dartmouth College (1956)
term “AI” coined by John McCarthy
Newell & Simon presented LOGIC THEORIST program

cis32-fall2005-parsons-lect02 2

1956-70:

• Programs written that could:
plan, learn, play games, prove theorems, solve problems.

• Major centres established:

– Minsky — MIT
– McCarthy — Stanford
– Newell & Simon — CMU

• Major feature of the period were microworlds — toy problem
domains.
Example: blocks world.
“It’ll scale, honest. . . ”

cis32-fall2005-parsons-lect02 3

1970s:

• 1970s period of recession for AI
(Lighthill report in UK)

• Techniques developed on microworlds would not scale.
• Implications of complexity theory developed in late 1960s, early

1970s began to be appreciated:

– brute force techniques will not work.
– works in principle does not mean works in practice.

cis32-fall2005-parsons-lect02 4

1980s:

• General purpose, brute force techniques don’t work, so use
knowledge rich solutions.

• Early 1980s saw emergence of expert systems as systems capable
of exploiting knowledge about tightly focussed domains to solve
problems normally considered the domain of experts.

• Ed Feigenbaum’s knowledge principle.

cis32-fall2005-parsons-lect02 5

• Expert systems success stories:

– MYCIN — blood diseases in humans;
– DENDRAL — interpreting mass spectrometers;
– R1/XCON — configuring DEC VAX hardware;
– PROSPECTOR — finding promising sites for mineral deposits;

• Expert systems emphasised knowledge representation: rules,
frames, semantic nets.

• Problems:

– the knowledge elicitation bottleneck;
– marrying expert system & traditional software;
– breaking into the mainstream.

cis32-fall2005-parsons-lect02 6

1990s:

• Most companies set up to commercialise expert systems
technology went bust.

• “AI as homeopathic medicine” viewpoint common.

• 1990s: emphasis on understanding the interaction between
agents and environments.

• AI as component, rather than as end in itself.

– “Useful first” paradigm — Etzioni (NETBOT, US$35m)
– “Raisin bread” model — Winston.

cis32-fall2005-parsons-lect02 7

Intelligent Agents
• An agent is a system that is situated in an environment, and

which is capable of perceiving its environment and acting in it to
satisfy its design objectives.

• Pictorially:

Agent
???

effectors

sensors

Environment

cis32-fall2005-parsons-lect02 8

• Human “agent”:

– environment: physical world;
– sensors: eyes, ears, . . .
– effectors: hands, legs, . . .

• Software agent:

– environment: (e.g.) UNIX operating system;
– sensors: ls, ps, . . .
– effectors: rm, chmod, . . .

• Internet agent:

– environment: the Internet;
– sensors: http requests;
– effectors: http commands.

cis32-fall2005-parsons-lect02 9

What to do?

Those who do not reason
Perish in the act.

Those who do not act
perish for that reason

(W H Auden)

• The key problem we have is knowing the right thing to do.

• Knowing what to do can in principle be easy: consider all the
alternatives, and choose the “best”.

• But Auden’s quote! In any time-constrained domain, we have to
make a decision in time for that decision to be useful!

• A tradeoff.

cis32-fall2005-parsons-lect02 10

• Need to know how and when to evaluate success.

• How:

– an objective performance measure;
– application specific;

• When:

– in discrete episodes, or over long periods?

• Don’t confuse omniscience with rationality.
• Real agents don’t know enough to always make the best choice.

(We often fall into this trap when making judgements about
history.)

• Rationality concerned with expected success given information
available.

cis32-fall2005-parsons-lect02 11

• Ideal rational agent:
For each percept sequence, an ideal rational agent will act to
maximise its expected performance measure, on the basis of
information provided by percept sequence plus any information
built in to agent.

• Note that this does not preclude performing actions to find things
out.

• More precisely, we can view an agent as a function:

f : P∗

→ A

from sequences of percepts P to actions A.

cis32-fall2005-parsons-lect02 12

• For example, a quadratic agent:

Percept Action
0 0
1 1
2 4
3 9
4 16
.

• This table can be viewed as a specification of the agent.
• We don’t have to implement agent as table lookup:

int agent(int n)
{

return n * n;
}

cis32-fall2005-parsons-lect02 13

• Autonomy a crucial concern for agents.
Means behaviour is based on own experience. Implies learning,
or adaptation.

cis32-fall2005-parsons-lect02 14

Structure of Agents

• Two components:

– program: the thing which defines the mapping from percept
sequences to actions;

– architecture: the “shell” into which the agent program fits.

Agent = program + architecture.
• An appropriate architecture can make design of programs much

easier.

cis32-fall2005-parsons-lect02 15

Classifying Environments

• The PAGE approach:

– percepts;
– actions;
– goals;
– environment.

• Example: Refinery controller.

– percepts: temp, pressure readings;
– actions: open, close valves, switch on, off heaters. . . ;
– goals: maximise purity, yield, safety;
– environment: refinery.

cis32-fall2005-parsons-lect02 16

• Example: Medical diagnosis system.

– percepts: symptoms, findings, patient answers;
– actions: questions, tests, treatments;
– goals: healthy patient, minimise costs;
– environment: patient, hospital.

• Example: Email manager.

– percepts: email arrived, headers, content of email;
– actions: delete email, reorder email, obtain user attention;
– goals: present important email first; hide junk email;
– environment: mail reader, operating system.

cis32-fall2005-parsons-lect02 17

Accessible vs inaccessible

An accessible environment is one in which the agent can obtain
complete, accurate, up-to-date information about the
environment’s state.

Most moderately complex environments (including, for example,
the everyday physical world and the Internet) are inaccessible.

The more accessible an environment is, the simpler it is to build
agents to operate in it.

cis32-fall2005-parsons-lect02 18

Deterministic vs non-deterministic

A deterministic environment is one in which any action has a
single guaranteed effect — there is no uncertainty about the state
that will result from performing an action.

The physical world can to all intents and purposes be regarded
as non-deterministic.

Non-deterministic environments present greater problems for
the agent designer.

cis32-fall2005-parsons-lect02 19

Episodic vs non-episodic .

In an episodic environment, the performance of an agent is
dependent on a number of discrete episodes, with no link
between the performance of an agent in different scenarios.

An example of an episodic environment would be a mail sorting
system.

Episodic environments are simpler from the agent developer’s
perspective because the agent can decide what action to perform
based only on the current episode — it need not reason about the
interactions between this and future episodes.

cis32-fall2005-parsons-lect02 20

Static vs dynamic .

A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the agent.

A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond the
agent’s control. The physical world is a highly dynamic
environment.

cis32-fall2005-parsons-lect02 21

Discrete vs continuous .

An environment is discrete if there are a fixed, finite number of
actions and percepts in it.

Russell and Norvig give a chess game as an example of a discrete
environment, and taxi driving as an example of a continuous
one.

cis32-fall2005-parsons-lect02 22

Summary .

• This lecture has looked at:

– The history of AI
– The notion of intelligent agents
– A classification of agent environments.

• Broadly speaking, the rest course will cover the major techniques
of AI, with special reference to agents.

• The techniques we’ll look at will start with those applicable to
simple environments and move towards those suitable for more
complex environments.

cis32-fall2005-parsons-lect02 23

