
NEURAL NETWORKS



Introduction

• In this lecture we will look at neural networks, so called because
they mimic the structure of the brain.

• However, they don’t have to be viewed in this way.

• We will start by thinking of them as an implementation of the
kind of stimulus-response agents we looked at in the last lecture.

• They also provide us with our first taste of learning.
• The learning angle means we don’t have to figure out the model

parameters for ourselves.
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Networks for Stimulus-Response

• Production systems can be easily implemented as computer
programs.

• They may also be implemented directly as electronic circuits, as
combinations of AND, OR, and NOT gates.

• (Or as simulations of electronic circuits.)
• One useful kind of circuit is built of elements whose output is a

nonlinear function of a weighted combinations of its inputs.
• One kind of such unit is a threshold logic unit (TLU).

• This computes a weighted sum of its imputs, compares this to a
threshold, and outputs 1 if the threshold is exceeded, 0
otherwise.
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• The Boolean functions that can be computed using a TLU are
called linearly seperable functions.
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• We can use TLUs to implement some Boolean functions, for
instance a simple conjunction:
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but we can’t implement an exclusive-OR this way.
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• We can implement the kind of function used for boundary
following:

x1x2 = (s2 + s3)(s4 + s5) (1)
= (s2 + s3)s4s5 (2)

as the figure overleaf
• If you don’t see why, figure out what the weighted sum is for

different combinations of sensor readings.
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• When we have a simple problem, it is possible that a single TLU
can compute the right action.

• For this to happen we need there to be only two possible actions.

• For more complex problems, we need a network of TLUs.
• These are often called neural networks because they have some

similarity to the networks of neurons from which the brain is
constructed.

• We can use such a network to implement a T-R program.
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• This network implements a set of production rules.
• The input to each unit on the left is the 1 or 0 of the condition.

• (This might be computed from the si by another circuit.)
• Each rule is a Test, Inhibit, Squelch, Act (TISA) circuit:

– One TLU computes a conjunction.
– The other computes a disjunction.
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• Inhibit is 0 when no rules above have a true condition.

• Test is 1 if the condition is true.
• If Test is 1 and Inhibit is 0, Act is 1.

• If either Test is 1 or Inhibit is 1 then Squelch is 1.
• If Squelch is 1 then every TISA below is Inhibited.
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Learning in neural networks

• So far we have assumed that the mapping between stimulus and
response was programmed by the agent designer.

• That is not always convenient or possible.
• When it isn’t, then it is possible to learn the right mapping.

• We will start to examine one way of doing that in this lecture.
• We will look at the case of learning the mapping for a single TLU.
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• In brief, the learning procedure is as follows.
• We start with some set of weights:

– random;
– uniform

• We then run a set of inputs, and look at the outputs.

• If they don’t match, we alter the weights.
• We keep learning until the weights are right.
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• Remember the set up we had before.
• We have a feature vector X, which maps to a particular action a.
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• Now consider that we have a set of these Θ.
• Every element of Θ is an X with a corresponding a.

• This is a training set, and the set A of all a are called the classes or
labels.

• The learning problem here is to find a way of describing the
mapping from each member of Θ to the appropriate member of
A.

• We want to find a function f (X) which is “acceptable”.
• That is it produces an action which agrees with the examples for

as many members of the training set as possible.
• Because we have a set of examples to learn from, we call this

supervised learning.
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Learning in a single TLU

• We train a TLU by adjusting the input weights.

• We assume that the vector X is numerical so that a weighted sum
makes sense.

• The set of weights w1, w2, . . . , wn is denoted by W .

• The threshold is written as θ, so:

– Output is 1 if
s = X · W > θ

– Output is 0 otherwise

• X · W is just a way of writing x1w1 + x2w2 + . . . + xnwn
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• A TLU divides the space of feature vectors Θ:
Equation of hyperplane:
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• In two dimensions, the TLU defines a boundary between two
parts of a plane (as in the picture).

• In three dimensions, the TLU defines a plane which separates
two parts of the space.

• In higher-dimension spaces the boundary defined by the TLU is
a hyperplane.

• Whatever it is, it separates:

X · W − θ > 0

from
X · W − θ < 0

cis32-fall2005-parsons-lect04 18



• Changing θ moves the boundary relative to the origin.

• Changing W alters the orientation of the boundary.
• Following the textbook we will assume that:

θ = 0

• This simplifies the subsequent maths :-)

• Arbitrary thresholds can be obtained by adding in an extra
weight n + 1 which is −θ.

• The n + 1th element of the input vector is always 1.
• So, we don’t restrict ourselves by making this assumption.
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Summary

• In this lecture we introduced neural networks.

• We first considered them as an implementation of
stimulus-response agents.

• In this incarnation we adjust the weights by hand.

• We also started thinking about how to learn the weights
automatically.

• We will finish this line of work off next lecture.
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