HEURISTIC SEARCH I

Recap

The last lecture introduced
® Basic problem solving techniques:

— Breadth-first search
— Depth-first search

® Breadth-first search is complete but expensive.
® Depth-first search is cheap but incomplete
e Can’t we do better than this?

e That is what this lecture is about

cis32-fall2005-parsons-lect07

Overview

Aims of this lecture:

® show how basic search (depth 1st, breadth 1st) can be improved;

¢ introduce:

— depth limited search;
— iterative deepening.

e show that even with such improvements, search is hopelessly
unrealistic for real problems.

cis32-fall2005-parsons-lect07 3

Algorithmic Improvements

® Are then any algorithmic improvements we can make to basic
search algorithms that will improve overall performance?

 Try to get optimality and completeness of breadth 1st search with
space efficiency of depth 1st.

® Not too much to be done about time complexity :-(

cis32-fall2005-parsons-lect07

Depth Limited Search

® Depth first search has some desirable properties — space
complexity.

e But if wrong branch expanded (with no solution on it), then it
won’t terminate.

e [dea: introduce a depth limit on branches to be expanded.

® Don’t expand a branch below this depth.

cis32-fall2005-parsons-lect07

® General algorithm for depth limited search:

depth limt = nmax depth to search to;
agenda = initial state;
whi | e agenda not enpty do
t ake node fromfront of agenda;
new nodes = apply operations to node;
| f goal state in new nodes then {
return sol ution;
}

| f depth(node) < depth limt then {
add new nodes to front of agenda;

}
}

cis32-fall2005-parsons-lect07

® For the 8-puzzle setup as:

2 8 3
1 6 4
7 5

e the search will be as follows:

cis32-fall2005-parsons-lect07

~|Oo|0
[S2] E=N (98]

=[N0

(@)

© 1998 Morgan Kaufman Publishers

cis32-fall2005-parsons-lect07

2[8]3
1[6]4
S
2[8]3
164
11715
2[813
64
2 [117]5
8]3
2[6]4
3 [I]7]5
8] 13
2[6]4
4 111715
8[6
2
o [1]7
(b)

[l (2] [NS)
[S2] BN [98)

Discarded before
generating node 7

=N

~|o|o
[$2] E=N [9%)

~|o|o
[$2] E=N (98]

Lol (2] [NS)
[S2] BN [98)

[l [22] [\

~l|ooN

® So, when we hit the depth bound, we don’t add any more nodes
to the agenda.

® Then we pick the next node off the agenda.

® This has the effect of moving the search back to the last node
above depth limit that that is “partly expanded”.

e This is known as chronological backtracking.

® The effect of the depth limit is to force the search of the whole
state space down to the limit.

® We get the completeness of breadth-first (down to the limit),
with the space cost of depth first.

cis32-fall2005-parsons-lect07

Iterative Deepening

® Unfortunately, if we choose a max depth for d.l.s. such that
shortest solution is longer, d.1.s. is not complete.

® J[terative deepening an ingenious complete version of it.

e Basic idea is:

— do d.Ls. for depth 1; if solution found, return it;
— otherwise do d.l.s. for depth n; if solution found, return it;
— otherwise, ...

® So we repeat d.l.s. for all depths until solution found.

cis32-fall2005-parsons-lect07

10

® General algorithm for depth limited search:

depth imt = 1;
repeat {
result = depth |imted search(
max depth = depth limt;
agenda = initial node;
)
| f result contains goal then {
return result;
}
depth limt = depth limt + 1;
} until false; /* i.e., forever */

e Calls d.l.s. as subroutine.

cis32-fall2005-parsons-lect07 11

A

A
I

Depth bound =1

© 1998 Morgan Kaufman Publishers

cis32-fall2005-parsons-lect07

fh f

o o
Depth bound =2

Depth bound = 3 Depth bound = 4

12

® Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we
need to regenerate the tree to depth d — 1.

e [sn’t this inefficient?
* Tradeoff time for memory.

* In general we might take a little more time, but we save a lot of
memory.

e Now for breadth-first search to level d:

Nt = 1+b+b*+b (1)
bd+1_1

cis32-fall2005-parsons-lect07 13

® In contrast a complete depth-limited search to level |:

pitl — 1
b—1

® (This is just a breadth-first search to depth j.)

b
Ny =

* In the worst case, then we have to do this to depth d, so
expanding:

bt —1
b—1

d
Nig = X
i=0

b2 —ob —bd +d + 1
(b—1)

cis32-fall2005-parsons-lect07

(3)

(4)
()
(6)

14

e For large d:

Nig b

Ny b-—1 7)

* So for high branching and relatively deep goals we do a small
amount more work.
® Example: Suppose b = 10 and d = 5.

Breadth first search would require examining 111, 111 nodes,
with memory requirement of 100, 000 nodes.

Iterative deepening for same problem: 123, 456 nodes to be
searched, with memory requirement only 50 nodes.

Takes 11% longer in this case.

cis32-fall2005-parsons-lect07 15

® For the 8-puzzle setup as:

2 8 3 1
1 6 4 8
7 5 7

e What would iterative deepening search look like?

® Well, it would explore the search space:

cis32-fall2005-parsons-lect07

16

LOW3[-suosred-goOZ[[eJ-¢esSIo

19

=]
Qo
O =
o] <t]o) of<t]w] [« o]<t]w] [w]<]w0! <[] [eo]<] of<t]w] [o]wo o]0 <[] [o]<]w] [e]<]wo <[o
N[oofo] o [[o] [eo]=fw] [of |5 [2[]o] [wf=fo] [of~o] [of~[— [ofsI~] [ofs~] (ool [ool~] o] [~ [l
P~ 2187 [N~ |© [N~ |© [co| N~ [co| N~ [N |— (OO (N[O — (N[O (OO O] 0O | N 0O |||
r V % A
o]«] [m]o]«] [w]o]s] [wfo]<] [w]w]o] [o]m]w] [<] Twl o] <t]o] o] <o) o] <[] o] <r[uo) o] Jo o< o<
(OO CO|LD)| [CO|LD 0O ||| 00| <t| <t|©O (CN|CO|WO| 6286 581 4 | 387 2847 — 00|~ O O~
] T e e T e o o o I Y e o~ I~ l [~feo N (oo~ ol [l NINE A [o]= ~ [oo][=
oo]<] o< o]wo o]0 <[] o] <t]w0o] o[« o<t o] <t]wo) o<t
ool og [o] o [Rl=fo] (o [R5fe] | [o]ofol < [eo]o o [©]=o NSRS — [~ o [@lel~
T T 1 e e T) o = O o = T I e — [~N= i I PN — [~[o]= e N 1N
o] T o] [o] o] <[] o[<]o o<t [uo)
oo|co[0o] o[<r[o] oo o] o[~
o [N~ 00 N[~ N~ [N~ 0 | |~ [T NS
o< o] <o) o[<]o
oo cof | ofwofr~ <4
<
il — [~
<t [~ o [~ o 5
=
=}
a
=4
©
£
&=
>
Gl
X
o<t o] <
ofco S
— [N[=]= S
=
©
£ o S
c 9O =)
+— O l
0w < ©

* In the following way.

e States would be expanded in the order:

1. 1

2.1,2,3,4

3.1,2,5,3,6,7,8,4,9.

4. 1,2,5,10,11, 3,6,13,13,7, 14, 15, 8, 16, 17,4, 9, 18, 19.
5

* Note that these are the states visited, not the nodes on the agenda.

cis32-fall2005-parsons-lect07

18

Bi-directional Search

® Suppose we search from the goal state backwards as well as from
initial state forwards.

* Involves determining predecessor nodes to goal, and then looking

at predecessor nodes to this, ...
e Rather than doing one search of b%, we do two b¥? searches.

e Much more efficient.

cis32-fall2005-parsons-lect07

19

e Example:
Suppose b = 10, d = 6.
Breadth first search will examine nodes.
Bidirectional search will examine nodes.

* Can combine different search strategies in different directions.

® For large d, is still impractical!

cis32-fall2005-parsons-lect07

20

Summary

® This lecture has looked at some more efficient techniques than
breadth first and depth first search.

— depth-limited search;
— iterative-deepening search; and
— bidirectional search.

® These all improve on depth-first and breadth-first search.
e However, all fail for big enough problems (too large state space).

® Next lecture, we will look at approaches that cut down the size
of the state-space that is searched.

cis32-fall2005-parsons-lect07 21

