
HEURISTIC SEARCH II



Recap

The last lecture introduced

• More advanced problem solving techniques:

– Depth limited search
– Iterative deepening
– Bidirectional search

• These improved on basic techniques like breadth-first and
depth-first search.

• However, they still aren’t powerful enough to give solutions for
realistic problems.

• Are there more improvements we can make?
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Overview

Aims of this lecture:

• To show how applying some knowledge of the problem can help.
• Introduce heuristics — rules of thumb.

• Introduce heuristic search: guided by rules of thumb which help
to decide which node to expand:

– uniform-cost search;
– greedy search;
– A* search.
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Heuristic (Informed) Search

• Whatever search technique we use, exponential time complexity.
• Tweaks to the algorithm will not reduce this to polynomial.

• We need problem specific knowledge to guide the search.
• Simplest form of problem specific knowledge is heuristic.

• Usual implementation in search is via an evaluation function
which indicates desirability of expanding node.
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Uniform Cost Search

• Recall we have a path cost function,

g : Nodes → R

which gives cost to each path.
• Why not expand the cheapest path first?

• Intuition: cheapest is likely to be best!
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• General algorithm for uniform search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
g(node) = min { g(n) | n in agenda}

new nodes = apply operations to node;
if goal state in new nodes then {
return solution;

}
else add new nodes to agenda

}
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• Uniform cost search guaranteed to find cheapest solution
assuming path costs grow monotonically.

• In other words, adding another step to the solution makes it
more costly.

• If path costs don’t grow monotonically, then exhaustive search is
required.
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• Once again we can illustrate this on the 8-puzzle:
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• For this set up, the search of the space:
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• Will happen in the following way.
• States would be expanded in the order:

1. 1
2. 2, 3, 4
3. 5, 6, 7, 8, 9
4. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
5. . . .

• Note that this is just like breadth first search (because the path
costs are just the same).
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• Instead, assume up/down moves cost 2 and left/right moves
cost 1.

• States would be expanded in the order:

1. 1
2. 2, 3, 4
3. 5
4. 9
5. 6, 7, 8
6. . . .
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Greedy Search
• Most heuristics estimate cost of cheapest path from node to solution.

• We have a heuristic function,

h : Nodes → R

which estimates the distance from the node to the goal.

• Example: In route finding, heuristic might be straight line
distance from node to destination.

• Heuristic is said to be admissible if it never overestimates cheapest
solution.
Admissible = optimistic.

• Greedy search involves expanding node with cheapest expected cost
to solution.
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• General algorithm for greedy search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
h(node) = min { h(n) | n in agenda}

new nodes = apply operations to node;
if goal state in new nodes then {
return solution;

}
else add new nodes to agenda

}
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• Greedy search finds solutions quickly.
• Doesn’t always find best.
• Susceptible to false starts.

– Chases good looking options that turn out to be bad.
• Only looks at current node. Ignores past!

• Also myopic (shortsighted).

cis32-fall-2005-parsons-lect08 14



• For the 8-puzzle one good heuristic is:

– count tiles out of place.
• Another is:

– Manhattan blocks’ distance
• The latter works for other problems as well:

– Robot navigation.
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A* Search
• A* is very efficient search strategy.
• Basic idea is to combine

uniform cost search
and

greedy search.

• We look at the cost so far and the estimated cost to goal.
• Gives heuristic f :

f (n) = g(n) + h(n)

where

– g(n) is path cost of n;
– h(n) is expected cost of cheapest solution from n.

• Aims to mimimise overall cost.
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• General algorithm for A* search:

agenda = initial state;
while agenda not empty do
{

take node from agenda such that
f(node) = min { f(n) | n in agenda}
where f(n) = g(n) + h(n)

new nodes = apply operations to node;
if goal state in new nodes then {
return solution;

}
else add new nodes to agenda

}
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• Considering the 8-puzzle (for the last time :-):
• We combine:

– Path cost function:
∗ number of moves.

– Heuristic function:
∗ tiles out of places.

• This gives the following search.
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The optimality of A*

• A* is optimal in precise sense—it is guaranteed to find a
minimum cost path to the goal.

• There are a set of conditions under which A* will find such a
path:

1. Each node in the graph has a finite number of children.
2. All arcs have a cost greater than some positive ε.
3. For all nodes in the graph h(n) always underestimates the

true distance to the goal.
• The key here is the third bullet — the notion of admissibility.
• We will express this by saying a heuristic h(·) is admissible if

h(n) ≤ hT(n)
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More informed search

• IF two versions of A*, A∗
1

and A∗
2

use different functions h1 and h2,
• AND

h1(n) < h2(n)

for all non-goal nodes,

• THEN we say that A∗
2

is more informed than A∗
1
.

• The better informed A* is, the less nodes it has to expand to find
the minimum cost path.
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• As an example of ”more informed” consider the 8-puzzle:

– tiles out of place; and
– Manhattan blocks distance.

• We need h(n) to underestimate hT(n) to ensure admissibility.

• But, the closer the estimate, the easier it is to reject nodes which
are not on the optimal path.

• This means less nodes need to be searched.

cis32-fall-2005-parsons-lect08 23



Iterative deepening A*

• When we do heuristic search, we search some portion of the full
search space.

• ”Focussed breadth first search”.

• So we can still hit intractability.
• Adapting iterative deepening can help us.

• Instead of a depth limit, we impose a cost limit, and do a depth
first search until it is exceeded.

• Then we backtrack, and extend the limit if we don’t find the goal.
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• The initial cost cut off is set to f (n0).

• This is just the estimated cost of finding a solution h(n0).
• This will never overestimate the cost, so is a good start point.

• If this cost-limit does not provide a solution, what is the next cost
limit.

• Well, if the heuristic is a good one, the cost of the cheapest path
to the goal will be the lowest f (n) of an unexpanded node.

• So we set the new cost bound to this.

• This, then is iterative deepening A* (IDA*).
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Summary

• This lecture has looked at some techniques for refining the
search space:

– uniform cost search;
– greedy search; and
– A* search.

• When these work they explore just the relevant part of the search
space.

• There are also techniques that go further than those we have
studied.
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• These techniques include:

– Focussed Dynamic A* (called D*)
– D* Lite
– Delayed D*
– Life-long planning A* (called LPA*)
– PAO*

• There are three directions we will take from here:

– Adversarial search
– Learning the state space.
– Adding in more knowledge about the domain.
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