
KNOWLEDGE REPRESENTATION

Introduction

• Using logic is one approach to knowledge representation.

• Another possibility is to design specific mechanisms for
representing the kind of knowledge we need in AI.

• Leads to an area of AI called knowledge representation.
• This lecture will look at some general aspects of knowledge

representation, and also the specific example of production rules.

cis32-fall2005-parsons-lect12 2

The Knowledge Principle

• Ed Feigenbaum:

“. . . power exhibited . . . is primarily a consequence of the
specialist knowledge employed by the agent and only very
secondarily related to . . . the power of the [computer]”
“Our agents must be knowledge rich, even if they are
methods poor.”

cis32-fall2005-parsons-lect12 3

The Role of Knowledge

• Knowledge about a domain allows problem solving to be
focussed — not necessary to exhaustively search.

• Explicit representations of knowledge allow a domain expert to
understand the knowledge a system has, add to it, edit it, and so
on.
Knowledge engineering.

• Comparatively simple algorithms can be used to reason with the
knowledge and derive new knowledge.

cis32-fall2005-parsons-lect12 4



Knowledge Representation

• Question: How do we represent knowledge in a form amenable
to computer manipulation?

• Desirable features of KR scheme:

– representational adequacy;
– inferential adequacy;
– inferential efficiency;
– well-defined syntax & semantics;
– naturalness.

cis32-fall2005-parsons-lect12 5

Representational Adequacy

• A KR scheme must be able to actually represent the knowledge
appropriate to our problem.

• Some KR schemes are better at some sorts of knowledge than
others.

• There is no one ideal KR scheme!

cis32-fall2005-parsons-lect12 6

Inferential Adequacy

• KR scheme must allow us to make new inferences from old
knowledge.

• It must make inferences that are:

– sound — the new knowledge actually does follow from the
old knowledge;

– complete — it should make all the right inferences.

• Soundness usually easy; completeness very hard!

cis32-fall2005-parsons-lect12 7

• Example. Given knowledge. . .
Michael is a man.
All men are mortal.

the inference
Simon is mortal.

is not sound, whereas
Michael is mortal.

is sound.

cis32-fall2005-parsons-lect12 8



Inferential Efficiency

• A KR scheme should be tractable — make inferences in
reasonable (polynomial) time.

• Unfortunately, any KR scheme with interesting expressive power is
not going to be efficient.

• Often, the more general a KR scheme is, the less efficient it is.
• Use KR schemes tailored to problem domain — less general, but

more efficient.
• (Any KR scheme with expressive power = first-order logic is

undecidable.)

cis32-fall2005-parsons-lect12 9

Syntax and Semantics

• It should be possible to tell:

– whether any construction is “grammatically correct”.
– how to read any particular construction — no ambiguity.

Thus KR scheme should have well defined syntax.
• It should be possible to precisely determine, for any given

construction, exactly what its meaning is.
Thus KR scheme should have well defined semantics.

• Syntax is easy; semantics is hard!

cis32-fall2005-parsons-lect12 10

Naturalness

• Ideally, KR scheme should closely correspond to our way of
thinking, reading, and writing.

• Allow knowledge engineer to read & check knowledge base.

• Again, more general a KR scheme is, less likely it is to be readable
& understandable.

cis32-fall2005-parsons-lect12 11

Rules

• Knowledge is specified as a collection of production rules.

• Each rule has the form

condition −→ action

which may be read
if condition then action.

• The condition (antecedent) is a pattern.
• The action (consequent) is an operation to be performed if rule

fires.

cis32-fall2005-parsons-lect12 12



• A rule-based (production) system has a working memory of facts
against which condition is matched.

• Action is often a fact to be added to working memory.
• Rule fires if match is successful; Mechanism that fires rules is

inference engine.

Rule Base

Inference
Engine

Working
Memory

User

facts

facts

facts
rules

cis32-fall2005-parsons-lect12 13

• Example rule base:

R3: IF animal has feathers
THEN animal is a bird

R4: IF animal is a bird
THEN animal can fly

R5: IF animal can fly
THEN animal is not scared of heights

cis32-fall2005-parsons-lect12 14

Relation to search

• Using rules can be thought of as just another form of search.
• Facts are states.
• Working memory is the agenda.

• Rules are the operations on states.
• This suggests that there are schemes for applying rules which are

similar to breadth-first search etc.
• We will look at these next.

cis32-fall2005-parsons-lect12 15

• Another example:

R1: IF animal has hair
THEN animal is a mammal

R2: IF animal gives milk
THEN animal is mammal

R3: IF animal has feathers
THEN animal is a bird

R4: IF animal can fly
AND animal lays eggs
THEN animal is bird

cis32-fall2005-parsons-lect12 16



R5: IF animal eats meat
THEN animal is carnivore

R6: IF animal has pointed teeth
AND animal has claws
THEN animal is carnivore

R7: IF animal is mammal
AND animal has hoofs
THEN animal is ungulate

R8: IF animal is mammal
AND animal chews cud
THEN animal is ungulate

cis32-fall2005-parsons-lect12 17

R9: IF animal is mammal
AND animal is carnivore
AND animal has tawny colour
AND animal has dark spots
THEN animal is cheetah

R10: IF animal is mammal
AND animal is carnivore
AND animal has tawny colour
AND animal has black stripes
THEN animal is tiger

cis32-fall2005-parsons-lect12 18

R11: IF animal is ungulate
AND animal has long legs
AND animal has dark spots
THEN animal is giraffe

R12: IF animal is ungulate
AND animal has black stripes
THEN animal is zebra

R14: IF animal is bird
AND animal does not fly
AND animal has long legs
AND animal has long neck
THEN animal is ostrich

cis32-fall2005-parsons-lect12 19

R14: IF animal is bird
AND animal does not fly
AND animal can swim
AND animal is black and white
THEN animal is penguin

R15: IF animal is bird
AND animal is good flyer
THEN animal is albatross

cis32-fall2005-parsons-lect12 20



Forward Chaining

• Given a set of rules like these, there are essentially two ways we
can use them to generate new knowledge:

– forward chaining — data driven;
– backward chaining — goal driven.

• In what follows. . .
let (c,a) be a rule.
let fires(c,WM) be true if condition c fires against working
memory WM.

• Forward chaining algorithm is as follows.

cis32-fall2005-parsons-lect12 21

var WM : set of facts
var goal : goal we are searching for
var RuleBase : set of rules
var firedFlag : BOOLEAN
repeat

firedFlag = FALSE
for each (c,a) in RuleBase do

if fires(c,WM) then
if a == goal then return success
end-if
add a to WM
set firedFlag to TRUE

end-if
end-for

until firedFlag = FALSE
return failure

cis32-fall2005-parsons-lect12 22

• Example. Suppose

WM = { animal has hair,
animal eats meat,
animal has tawny colour,
animal has dark spots}

and goal is

animal is cheetah

cis32-fall2005-parsons-lect12 23

• Note that all rules which can fire do fire.

• Can be inefficient — lead to spurious rules firing, unfocussed
problem solving (cf. breadth-first search).

• Set of rules that can fire known as conflict set.
• Decision about which rule to fire — conflict resolution.
• Number of strategies possible (cf. heuristic search):

– most specific rule first (with most antecedents).
– most recent first;
– user specified priorities.

cis32-fall2005-parsons-lect12 24



Meta Knowledge

• Another solution: meta-knowledge, (i.e., knowledge about knowledge)
to guide search.

IF
conflict set contains any rule (c,a) such that
a = ‘‘animal is mammal’’

THEN
fire (c,a)

• So meta-knowledge encodes knowledge about how to guide
search for solution.

• Explicitly coded in the form of rules, as with “object level”
knowledge.

cis32-fall2005-parsons-lect12 25

Backward Chaining

• Backward chaining means reasoning from goals back to facts.
• The idea is that this focusses the search.
• Thinking of the rules as building a tree connecting facts, . . .

• . . . in backward chaining, every path ends with the goal.
• Since, in general, there are more initial facts that goals, . . .

• . . . more of the paths built will be solutions than in forward
chaining (we hope :-).

cis32-fall2005-parsons-lect12 26

var WM : set of facts
var RuleBase : set of rules
var firedFlag : BOOLEAN
function prove(g : goal)

if g in WM then
return TRUE

if there is some (c,a) in WM
such that a == g then

for each precondition p in c do
if not prove(p,WM) then return FALSE

return TRUE
else

return FALSE
end-function

cis32-fall2005-parsons-lect12 27

• Example. Suppose

WM = { animal has hair,
animal eats meat,
animal has tawny colour,
animal has dark spots}

• and goal is

animal is cheetah

cis32-fall2005-parsons-lect12 28



Semantic Networks

• Taxonomic reasoning can be more efficient not in logic.
• Developed by Quillian in 1968, for semantic memory.
• Models the “associations” between ideas that people maintain.

• Semantic net is a labelled graph.

– nodes in graph represent objects, concepts, or situations;
– arcs in graph represent relationships between objects.

cis32-fall2005-parsons-lect12 29

Key types of arc:

• x subset
−→ y

“x is a kind of y” (⊂)
Example: penguin subset

−→ bird

• x member
−→ y

“x is a y”
Example: opus member

−→ penguin

• x R
−→ y

“x is R-related to y”
Example: bill

friend
−→ opus

• Inference is then by traversing arcs.

cis32-fall2005-parsons-lect12 30

cis32-fall2005-parsons-lect12 31

• Binary relations are easy and natural to represent.

• Others kinds of relation are harder.
• Unary relations (properties).

Example: “Opus is small”.

• Three place relations.

Example: “Opus brings tequila to the party.”

• Some binary relations are problematic . . .

“Opus is larger than Bill.”

cis32-fall2005-parsons-lect12 32



• Quantified statements are very hard for semantic nets.

Examples:

– “every dog has bitten a postman”
– “every dog has bitten every postman”

• Partitioned semantic nets can represent these.
• Of course, expressions like this are very easy to represent in first

order logic.

cis32-fall2005-parsons-lect12 33

• Example semantic net:

energy_source Office_machines

Wall_outlet

Robots Printers

Delivery Cleaning Laser_printers Ink_jet_printers

R2D2 Snoopy
Arc conventions:

Subset

Element

Function
© 1998 Morgan Kaufman Publishers

cis32-fall2005-parsons-lect12 34

Frames
• Frames are a kind of structured knowledge representation

mechanism.
• All information relevant to a particular concept is stored in frame

which resembles C struct, PASCAL record, Java object. . .
• Each frame has a number of slots.
• Each slot may be filled by:

– a value;
– a pointer to another frame;
– a procedure.

• Slots may have default values associated with them.

• Frames = OO!

cis32-fall2005-parsons-lect12 35

• Frames are typically used to represent the properties of objects,
and the relationships between them.

• Frames may represent:

– generic concepts (cf classes) or
– specific items (cf objects).

• Most important kind of link between frames:

is-a

• Facilitates reasoning about object properties.
• Allows default values to be inherited.

cis32-fall2005-parsons-lect12 36



• Example frame system:

Printers

subset_of: Office_machines

superset_of: {Laser_printers,
	 Ink_jet_printers}

energy_source: Wall_outlet

creator: John_Jones

date: 16_Aug_91

Frame name

Slots

Slot names Slot fillers

© 1998 Morgan Kaufman Publishers

cis32-fall2005-parsons-lect12 37

• How to reason with frame systems?

• Easy to answer questions such as
is x a y?
Simply follow the is-a links.

• Example: Is snoopy a laser printer.
• (Problem of multiple inheritance — Nixon diamond.)

• Also useful for default reasoning.
Simply inherit all default values that are not explicitly provided.

• Example: Does snoopy the printer have a wall outlet?

cis32-fall2005-parsons-lect12 38

• Scripts are a variant of frames, for representing stereotypical
sequences of events.

• A script is thus a frame with a set of prescribed slots, for
example:

– Some initial conditions;
– Some final conditions;
– Some state description;
– Some actions; and
– Some actors

• The structure of the script is heavily domain dependent.

cis32-fall2005-parsons-lect12 39

• Example:

SCRIPT
Name: RESTAURANT
Roles: Customer, Waiter, Cook, Cashier
Entry condition: Customer is hungry
Props: Food, table, money, menu, tip
Events:
1/ Customer enters restaurant
2/ Customer goes to table
3/ Waiter brings menu
4/ Customer orders food
5/ Waiter brings food
6/ Customer eats food

...

cis32-fall2005-parsons-lect12 40



...
10/ Customer leaves restaurant

Main concept: 6

Results: Customer not hungry,
Customer has less money,
Restaurant has more money,
Waiter gets tip

cis32-fall2005-parsons-lect12 41

• Scripts developed by Roger Schank for understanding stories.

• Used to help understand language.
• Scripts provide context information without which sentences

cannot be understood:

– sentences are not unconstrained sequences of words;
– stories are not unconstrained sequences of sentences.

• Schank developed SAM (Script Applier Mechanism) that could
fill in gaps in stories.

• Also able to “explain” elements of stories, e.g., people get upset
or angry when story deviates from script.

cis32-fall2005-parsons-lect12 42

Problems with Frames & Semantic Nets

• Both frames and semantic nets are essentially arbitrary.
• Both are useful for representing certain sorts of knowledge.

• But both are essentially ad hoc — lack precise meaning, or
semantics.

• Inference procedures poorly defined & justified.

• The syntax of KR scheme is irrelevant.
• Logic generalises these schemes. . . and that is both an advantage

and a disadvantage.

cis32-fall2005-parsons-lect12 43

Summary

• This lecture has introduced the idea of knowledge
representation, and some of the requirements of a knowledge
representation scheme.

• We also looked at several knowledge representation schemes:

– production rules
– semantic nets
– frames
– scripts

• Next lecture will look the role of logic in knowledge
representation.

cis32-fall2005-parsons-lect12 44


