
PROPOSITIONAL LOGIC



Introduction

• “Weak” (search-based) problem-solving does not scale to real
problems.

• To succeed, problem solving needs domain specific knowledge.
• In search, knowledge = heuristic.

• We need to be able to represent knowledge efficiently.
• One way to do this is to use logic.
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What is a Logic?

• When most people say ‘logic’, they mean either propositional logic
or first-order predicate logic.

• However, the precise definition is quite broad, and literally
hundreds of logics have been studied by philosophers, computer
scientists and mathematicians.

• Any ‘formal system’ can be considered a logic if it has:

– a well-defined syntax;
– a well-defined semantics; and
– a well-defined proof-theory.
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• The syntax of a logic defines the syntactically acceptable objects
of the language, which are properly called well-formed formulae
(wff). (We shall just call them formulae.)

• The semantics of a logic associate each formula with a meaning.

• The proof theory is concerned with manipulating formulae
according to certain rules.
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Propositional Logic

• The simplest, and most abstract logic we can study is called
propositional logic.

• Definition: A proposition is a statement that can be either true or
false; it must be one or the other, and it cannot be both.

• EXAMPLES. The following are propositions:

– the reactor is on;
– the wing-flaps are up;
– Marvin K Mooney is president.

whereas the following are not:

– are you going out somewhere?
– 2+3
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• It is possible to determine whether any given statement is a
proposition by prefixing it with:

It is true that . . .

and seeing whether the result makes grammatical sense.
• We now define atomic propositions. Intuitively, these are the set

of smallest propositions.
• Definition: An atomic proposition is one whose truth or falsity

does not depend on the truth or falsity of any other proposition.

• So all the above propositions are atomic.
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• Now, rather than write out propositions in full, we will
abbreviate them by using propositional variables.

• It is standard practice to use the lower-case roman letters

p, q, r, . . .

to stand for propositions.
• If we do this, we must define what we mean by writing

something like:

Let p be Marvin K Mooney is president.

• Another alternative is to write something like reactor is on, so
that the interpretation of the propositional variable becomes
obvious.
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The Connectives

• Now, the study of atomic propositions is pretty boring. We
therefore now introduce a number of connectives which will
allow us to build up complex propositions.

• The connectives we introduce are:

∧ and (& or .)
∨ or (| or +)
¬ not (∼)
⇒ implies (⊃ or →)
⇔ iff (↔)

• (Some books use other notations; these are given in parentheses.)
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And

• Any two propositions can be combined to form a third
proposition called the conjunction of the original propositions.

• Definition: If p and q are arbitrary propositions, then the
conjunction of p and q is written

p ∧ q

and will be true iff both p and q are true.
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• We can summarise the operation of ∧ in a truth table. The idea of
a truth table for some formula is that it describes the behaviour
of a formula under all possible interpretations of the primitive
propositions the are included in the formula.

• If there are n different atomic propositions in some formula, then
there are 2n different lines in the truth table for that formula.
(This is because each proposition can take one 1 of 2 values —
true or false.)

• Let us write T for truth, and F for falsity. Then the truth table for
p ∧ q is:

p q p ∧ q
F F F
F T F
T F F
T T T
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Or

• Any two propositions can be combined by the word ‘or’ to form
a third proposition called the disjunction of the originals.

• Definition: If p and q are arbitrary propositions, then the
disjunction of p and q is written

p ∨ q

and will be true iff either p is true, or q is true, or both p and q are
true.
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• The operation of ∨ is summarised in the following truth table:

p q p ∨ q
F F F
F T T
T F T
T T T

• Note that this ‘or’ is a little different from the usual meaning we
give to ‘or’ in everyday language.
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If. . . Then. . .

• Many statements, particularly in mathematics, are of the form:

if p is true then q is true.

Another way of saying the same thing is to write:

p implies q.

• In propositional logic, we have a connective that combines two
propositions into a new proposition called the conditional, or
implication of the originals, that attempts to capture the sense of
such a statement.
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• Definition: If p and q are arbitrary propositions, then the
conditional of p and q is written

p ⇒ q

and will be true iff either p is false or q is true.
• The truth table for ⇒ is:

p q p ⇒ q
F F T
F T T
T F F
T T T
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• The ⇒ operator is the hardest to understand of the operators we
have considered so far, and yet it is extremely important.

• If you find it difficult to understand, just remember that the
p ⇒ q means ‘if p is true, then q is true’.
If p is false, then we don’t care about q, and by default, make
p ⇒ q evaluate to T in this case.

• Terminology: if φ is the formula p ⇒ q, then p is the antecedent of
φ and q is the consequent.
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Iff

• Another common form of statement in maths is:

p is true if, and only if, q is true.

• The sense of such statements is captured using the biconditional
operator.

• Definition: If p and q are arbitrary propositions, then the
biconditional of p and q is written:

p ⇔ q

and will be true iff either:

1. p and q are both true; or
2. p and q are both false.

cis32-fall2005-parsons-lect13 16



• The truth table for ⇔ is:
p q p ⇔ q
F F T
F T F
T F F
T T T

• If p ⇔ q is true, then p and q are said to be logically equivalent.
They will be true under exactly the same circumstances.
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Not

• All of the connectives we have considered so far have been
binary: they have taken two arguments.

• The final connective we consider here is unary. It only takes one
argument.

• Any proposition can be prefixed by the word ‘not’ to form a
second proposition called the negation of the original.
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• Definition: If p is an arbitrary proposition then the negation of p
is written

¬p

and will be true iff p is false.

• Truth table for ¬:
p ¬p
F T
T F
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Comments
• We can nest complex formulae as deeply as we want.
• We can use parentheses i.e., ),(, to disambiguate formulae.
• EXAMPLES. If p, q, r, s and t are atomic propositions, then all of

the following are formulae:

– p ∧ q ⇒ r

– p ∧ (q ⇒ r)

– (p ∧ (q ⇒ r)) ∨ s

– ((p ∧ (q ⇒ r)) ∨ s) ∧ t

whereas none of the following is:

– p ∧

– p ∧ q)

– p¬
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Tautologies & Consistency
• Given a particular formula, can you tell if it is true or not?
• No — you usually need to know the truth values of the

component atomic propositions in order to be able to tell
whether a formula is true.

• Definition: A valuation is a function which assigns a truth value
to each primitive proposition.

• In Modula-2, we might write:

PROCEDURE Val(p : AtomicProp):
BOOLEAN;

• Given a valuation, we can say for any formula whether it is true
or false.

• A valuation is also known as an interpretation

cis32-fall2005-parsons-lect13 21



• EXAMPLE. Suppose we have a valuation v, such that:

v(p) = F
v(q) = T
v(r) = F

Then we truth value of (p ∨ q) ⇒ r is evaluated by:

(v(p) ∨ v(q)) ⇒ v(r) (1)
= (F ∨ T) ⇒ F (2)

= T ⇒ F (3)
= F (4)

Line (3) is justified since we know that F ∨ T = T .
Line (4) is justified since T ⇒ F = F.
If you can’t see this, look at the truth tables for ∨ and ⇒.
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• When we consider formulae in terms of interpretations, it turns
out that some have interesting properties.

• Definition:

1. A formula is a tautology iff it is true under every valuation;
2. A formula is consistent iff it is true under at least one

valuation;
3. A formula is inconsistent iff it is not made true under any

valuation.

• A tautology is said to be valid.
• A consistent formula is said to be satisfiable.

• An inconsistent formula is said to be unsatisfiable.
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• Theorem: φ is a tautology iff ¬φ is unsatisfiable.
• Now, each line in the truth table of a formula corresponds to a

valuation.
• So, we can use truth tables to determine whether or not formulae

are tautologies.
• If every line in the truth tabel has value T , the the formula is a

tautology.
• Also use truth-tables to determine whether or not formulae are

consistent.
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• To check for consistency, we just need to find one valuation that
satisfies the formula.

• If this turns out to be the first line in the truth-table, we can stop
looking immediately: we have a certificate of satisfiability.

• To check for validity, we need to examine every line of the
truth-table.
No short cuts.

• The lesson? Checking satisfiability is easier than checking validity.
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Syntax

• We have already informally introduced propositional logic; we
now define it formally.

• To define the syntax, we must consider what symbols can appear
in formulae, and the rules governing how these symbols may be
put together to make acceptable formulae.

• Definition: Propositional logic contains the following symbols:

1. A set of primitive propositions, Φ = {p, q, r . . .}.
2. The unary logical connective ‘¬’ (not), and binary logical

connective ‘∨’ (or).
3. The punctuation symbols ‘)’ and ‘(’.
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• The primitive propositions will be used to represent statements
such as:

I am in Brooklyn
It is raining
It is Friday 11th November 2005.

These are primitive in the sense that they are indivisible; we
cannot break them into smaller propositions.

• The remaining logical connectives (∧, ⇒, ⇔) will be introduced
as abbreviations.
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• We now look at the rules for putting formulae together.

• Definition: The set W , of (well formed) formulae of
propositional logic, is defined by the following rules:

1. If p ∈ Φ, then p ∈ W .
2. If φ ∈ W , then:

¬φ ∈ W
(φ) ∈ W

3. If φ ∈ W and ψ ∈ W , then φ ∨ ψ ∈ W .
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• The remaining connectives are defined by:

φ ∧ ψ = ¬(¬φ ∨ ¬ψ)

φ⇒ ψ = (¬φ) ∨ ψ

φ⇔ ψ = (φ⇒ ψ) ∧ (ψ ⇒ φ)

• These connectives are interpreted:

∧ And
⇒ Implies (if. . . then . . . )
⇔ If, and only if

• This concludes the formal definition of syntax.
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Semantics

• We now look at the more difficult issue of semantics, or meaning.

• What does a proposition mean?
• That is, when we write

It is raining.

what does it mean?
From the point of view of logic, this statement is a proposition:
something that is either > or ⊥.

• The meaning of a primitive proposition is thus either > or ⊥.
• In the same way, the meaning of a formula of propositional logic

is either > or ⊥.
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• QUESTION: How can we tell whether a formula is > or ⊥?

• For example, consider the formula

(p ∧ q) ⇒ r

Is this >?

• The answer must be: possibly. It depends on your interpretation of
the primitive propositions p, q and r.

• The notion of an interpretation is easily formalised.
• Definition: An interpretation for propositional logic is a function

π : Φ 7→ {T,F}

which assigns T (true) or F (false) to every primitive proposition.
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• But an interpretation only gives us the meaning of primitive
propositions; what about complex propositions — arbitrary
formulae?

• We use some rules which tell us how to obtain the meaning of an
arbitrary formulae, given some interpretation.

• Before presenting these rules, we introduce a symbol: |=. If π is
an interpretation, and φ is a formula, then the expression

π |= φ

will be used to represent the fact that φ is > under the
interpretation π.
Alternatively, if π |= φ, then we say that:

– π satisfies φ; or
– π models φ.

• The symbol |= is called the semantic turnstile.
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• The rule for primitive propositions is quite simple. If p ∈ Φ then

π |= p iff π(p) = T.

• The remaining rules are defined recursively.
• The rule for ¬:

π |= ¬φ iff π 6|= φ

(where 6|= means ‘does not satisfy’.)
• The rule for ∨:

π |= φ ∨ ψ iff π |= φ or π |= ψ
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• Since these are the only connectives of the language, these are
the only semantic rules we need.

• Since:
φ⇒ ψ

is defined as:
(¬φ) ∨ ψ

it follows that:

π |= φ⇒ ψ iff π 6|= φ or π |= ψ

• And similarly for the other connectives we defined.
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• If we are given an interpretation π and a formula φ, it is a simple
(if tedious) matter to determine whether π |= φ.

• We just apply the rules above, which eventually bottom out of
the recursion into establishing if some proposition is true or not.

• So for:
(p ∨ q) ∧ (q ∨ r)

we first establish if p ∨ q or q ∨ r are true and then work up to the
compound proposition.
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Summary

• This lecture started to look at logic from the standpoint of
artificial intelligence.

• The main use of logic from this perspective is as a means of
knowledge representation.

• We introduced the basics of propositional logic, and talked about
some of the properties of sentences in logic.

• We also looked at a formal definition of syntax and semantics,
and the semantic approach to inference.

• The next lecture will look at the syntactic approach—proof
theory.

cis32-fall2005-parsons-lect13 36


