
PROPOSITIONAL LOGIC II

Proof Theory

• What is logic used for? A number of things, but most
importantly, it is a language for representing the properties of things.

• But also, we hope it will give us a method for establishing the
properties of things.

• To see how logic may be used to establish the properties of
things, it helps to look at its history.

• Logic was originally developed to make the notion of an
argument precise.
(We do not mean argument as in fighting here!)

cis32-fall2005-parsons-lect14 2

• Here is a classic argument:

All men are mortal
Socrates is a man
Socrates is mortal

cis32-fall2005-parsons-lect14 3

• This example serves to illustrate a number of features of
arguments:

– The argument has a number of premises — these are the
statements that appear before the horizontal line;

– The argument has a conclusion — this is the statement that
appears after the horizontal line;

– The argument has the form
If

you accept that
the premises are true

then
you must accept that
the conclusion is true.

cis32-fall2005-parsons-lect14 4

• In mathematics, we are concerned with when arguments are
sound.

• To formalise the notion of a sound argument, we need some
extra terminology. . .

• Definition: If φ ∈ W , then:

1. if there is some interpretation π such that

π |= φ

then φ is said to be satisfiable, otherwise φ is unsatisfiable.
2. if

π |= φ

for all interpretations π, then φ is said to be valid.
• Valid formulae of propositional logic are called tautologies.

cis32-fall2005-parsons-lect14 5

• Theorem:

1. If φ is a valid formula, then ¬φ is unsatisfiable;
2. If ¬φ is unsatisfiable, then φ is valid.

• We indicate that a formula φ is valid by writing

|= φ.

• We can now define the logical consequence.

cis32-fall2005-parsons-lect14 6

• Definition: If
{φ1, . . . , φn, φ} ⊆ W

then φ is said to be a logical consequence of {φ1, . . . , φn} iff φ is
satisfied by all interpretations that satisfy

φ1 ∧ · · · ∧ φn.

• We indicate that φ is a logical consequence of φ1, . . . , φn by
writing

{φ1, . . . , φn} |= φ.

• An expression like this is called a semantic sequent.

cis32-fall2005-parsons-lect14 7

• Theorem:
{φ1, . . . , φn} |= φ.

iff
|= (φ1 ∧ · · · ∧ φn) ⇒ φ.

• So we have a method for determining whether φ is a logical
consequence of φ1, . . . φn: we use a truth table to see whether
φ1 ∧ · · · ∧ φn ⇒ φ is a tautology. If it is, then φ is a logical
consequence of φ1, . . . , φn.

• Our main concern in proof theory is thus to have a technique for
determining whether a given formula is valid, as this will then give us
a technique for determining whether some formula is a logical
consequence of some others.

cis32-fall2005-parsons-lect14 8

• EXAMPLE. Show that
p ∧ q |= p ∨ q.

To do this, we construct a truth-table for
(p ∧ q) ⇒ (p ∨ q).

Here it is:
(1) (2)

p q p ∧ q p ∨ q (1) ⇒ (2)
F F F F T
F T F T T
T F F T T
T T T T T

Since
(p ∧ q) ⇒ (p ∨ q).

is true under every interpretation, we have that p ∨ q is a logical
consequence of p ∧ q.

cis32-fall2005-parsons-lect14 9

• The notion of logical consequence we have defined above is
acceptable for a definition of a sound argument, but is not very
helpful for checking whether a particular argument is sound or
not.

• The problem is that we must look at all the possible
interpretations of the primitive propositions. While this is
acceptable for, say, 4 primitive propositions, it will clearly be
unacceptable for 100 propositions, as it would mean checking
2100 interpretations.
(Moreover, for first-order logic, there will be an infinite number
of such interpretations.)

• What we require instead is an alternative version of logical
consequence, that does not involve this kind of checking. This
leads us to the idea of syntactic proof.

cis32-fall2005-parsons-lect14 10

‘Syntactic’ Proof

• The idea of syntactic proof is to replace the semantic checking to
determine whether a formula is valid by a procedure that
involves purely syntactic manipulation.

• The kinds of techniques that we shall use are similar to those
that we use when solving problems in algebra.

• The basic idea is that to show that φ is a logical consequence of
φ1, . . . , φn, we use a set of rules to manipulate formulae.
If we can derive φ from φ1, . . . , φn by using these rules, then φ is
said to be proved from φ1, . . . , φn, which we indicate by writing

φ1, . . . , φn ` φ.

cis32-fall2005-parsons-lect14 11

• The symbol ` is called the syntactic turnstile.

• An expression of the form

φ1, . . . , φn ` φ.

is called a syntactic sequent.
• A rule has the general form:

` φ1; · · · ;` φn rule name
` φ

Such a rule is read:

If
φ1, . . . , φn are proved

then
φ is proved.

cis32-fall2005-parsons-lect14 12

• EXAMPLE. Here is an example of such a rule:

` φ;` ψ ∧-I
` φ ∧ ψ

This rule is called and introduction. It says that if we have proved
φ, and we have also proved ψ, then we can prove φ ∧ ψ.

• EXAMPLE. Here is another rule:
` φ ∧ ψ ∧-E
` φ;` ψ

This rule is called and elimination. It says that if we have proved
φ ∧ ψ, then we can prove both φ and ψ; it allows us to eliminate
the ∧ symbol from between them.

cis32-fall2005-parsons-lect14 13

• Let us now try to define precisely what we mean by proof.
• Definition: (Proof) If

{φ1, . . . , φm, φ} ⊆ W

then there is a proof of φ from φ1, . . . , φm iff there exists some
sequence of formulae

ψ1, . . . , ψn

such that ψn = φ, and each formula ψk, for 1 ≤ k < n is either one
of the formula φ1, . . . , φm, or else is the conclusion of a rule whose
antecedents appeared earlier in the sequence.

cis32-fall2005-parsons-lect14 14

• If there is a proof of φ from φ1, . . . , φm, then we indicate this by
writing:

φ1, . . . , φm ` φ.

• It should be clear that the symbols ` and |= are related. We now
have to state exactly how they are related.

• There are two properties of ` to consider:

– soundness;
– completness.
– Intuitively, ` is said to be sound if it is correct, in that it does

not let us derive something that is not true.
– Intuitively, completeness means that ` will let us prove

anything that is true.

cis32-fall2005-parsons-lect14 15

• Definition: (Soundness) A proof system ` is said to be sound
with respect to semantics |= iff

φ1, . . . , φn ` φ

implies
φ1, . . . , φn |= φ.

• Definition: (Completeness) A proof system ` is said to be
complete with respect to semantics |= iff

φ1, . . . , φn |= φ

implies
φ1, . . . , φn ` φ.

cis32-fall2005-parsons-lect14 16

A Proof System

• There are many proof systems for propositional logic; we shall
look at a simple one.

• First, we have an unusual rule that allows us to introduce any
tautology.

TAUT
` φ

if φ is a tautology

• Because a tautology is true there is no problem bringing it into
the proof.

cis32-fall2005-parsons-lect14 17

• Next, rules for eliminating connectives.

` φ ∧ ψ ∧-E
` φ;` ψ

` φ1 ∨ · · · ∨ φn;
φ1 ` φ;
· · · ;

φn ` φ

∨-E

` φ

cis32-fall2005-parsons-lect14 18

• An alternative ∨ elimination rule is:
` φ ∨ ψ;
` φ⇒ χ;
` ψ ⇒ χ

∨-E

` χ

• Next, a rule called modus ponens, which lets us eliminate ⇒.

` φ⇒ ψ;` φ ⇒-E
` ψ

cis32-fall2005-parsons-lect14 19

• Next, rules for introducing connectives.

` φ1; · · · ;` φn ∧-I
` φ1 ∧ · · · ∧ φn

` φ1; · · · ;φn ∨-I
` φ1 ∨ · · · ∨ φn

• We have a rule called the deduction theorem. This rule says that if
we can prove ψ from φ, then we can prove that φ⇒ ψ.

φ ` ψ ⇒-I
` φ⇒ ψ

• There are a whole range of other rules, which we shall not list
here.

cis32-fall2005-parsons-lect14 20

Proof Examples

• In this section, we give some examples of proofs in the
propositional calculus.

• Example 1:
p ∧ q ` q ∧ p

1. p ∧ q Given
2. p From 1 using ∧-E
3. q 1,∧-E
4. q ∧ p 2, 3, ∧-I

cis32-fall2005-parsons-lect14 21

• Example 2:
p ∧ q ` p ∨ q

1. p ∧ q Given
2. p 1, ∧-E
3. p ∨ q 2, ∨-I

cis32-fall2005-parsons-lect14 22

• Example 3:
p ∧ q, p ⇒ r ` r

1. p ∧ q Given
2. p 1, ∧-E
3. p ⇒ r Given
4. r 2, 3, ⇒-E

cis32-fall2005-parsons-lect14 23

• Example 4:
p ⇒ q, q ⇒ r ` p ⇒ r

1. p ⇒ q Given
2. q ⇒ r Given
3. p Ass |
4. q 1, 3, ⇒-E |
5. r 2, 4, ⇒-E |
6. p ⇒ r 3, 5, ⇒-I

cis32-fall2005-parsons-lect14 24

• Example 5:
(p ∧ q) ⇒ r ` p ⇒ (q ⇒ r)

1. (p ∧ q) ⇒ r Given
2. p Ass |
3. q Ass ||
4. p ∧ q 2, 3, ∧-I ||
5. r 1, 4, ⇒-I ||
6. q ⇒ r 3–5, ⇒-I |
7. p ⇒ (q ⇒ r) 2–6, ⇒-I

cis32-fall2005-parsons-lect14 25

• Example 6:
p ⇒ (q ⇒ r) ` (p ∧ q) ⇒ r

1. p ⇒ (q ⇒ r) Given
2. p ∧ q Ass |
3. p 2, ∧-E |
4. q 2, ∧-E |
5. q ⇒ r 1, 3, ⇒-E |
6. r 4, 5, ⇒-E |
7. (p ∧ q) ⇒ r 2–6, ⇒-I

cis32-fall2005-parsons-lect14 26

• Example 7:
p ⇒ q,¬q ` ¬p

1. p ⇒ q Given
2. ¬q Given
3. p Ass |
4. q 1, 3, ⇒-E |
5. q ∧ ¬q 2, 4, ∧-I |
6. ¬p 3, 5, ¬-I

cis32-fall2005-parsons-lect14 27

• Example 8:
p ⇒ q ` ¬(p ∧ ¬q)

1. p ⇒ q Given
2. p ∧ ¬q Ass |
3. p 2, ∧-E |
4. ¬q 2, ∧-E |
5. q 1, 3, ⇒-E |
6. q ∧ ¬q 4, 5, ∧-I |
7. ¬(p ∧ ¬q) 6, ¬-I

cis32-fall2005-parsons-lect14 28

• Example 9:

Jim will party all night and pass AI? That must be wrong.
If he works hard he won’t have time to party. If he doesn’t
work hard he’s not going to pass AI.

Let:

p Jim will party all night
q Jim will pass AI
r Jim works hard

Formalisation of argument:

r ⇒ ¬p,¬r ⇒ ¬q ` ¬(p ∧ q)

cis32-fall2005-parsons-lect14 29

1. r ⇒ ¬p Given
2. ¬r ⇒ ¬q Given
3. p ∧ q Ass |
4. r Ass ||
5. ¬p 1, 4, ⇒-E ||
6. p 3, ∧-I ||
7. p ∧ ¬p 5, 6, ∧-I ||
8. ¬r 4, 7, ¬-I |
9. ¬q 2, 9, ⇒-E |

10. q 3, ∧-E |
11. q ∧ ¬q 9, 10, ∧-I |
12. ¬(p ∧ q) 3, 11, ¬-I

cis32-fall2005-parsons-lect14 30

Summary

• This lecture continued our look at propositional logic.
• It concentrated on proof theory, and gave examples of a number

of different kinds of proof.
• Next lecture we will go on to look at predicate logic.

cis32-fall2005-parsons-lect14 31

