
PREDICATE LOGIC

First-Order Logic

• Aim of this lecture:
to introduce first-order predicate logic.

• More expressive than propositional logic.

• Consider the following argument:

– all monitors are ready;
– X12 is a monitor;
– therefore X12 is ready.

• Sense of this argument cannot be captured in propositional logic.

• Propositional logic is too coarse grained to allow us to represent
and reason about this kind of statement.

cis32-fall2005-parsons-lect15 2

Syntax

• We shall now introduce a generalisation of propositional logic
called first-order logic (FOL). This new logic affords us much
greater expressive power.

• Definition: The alphabet of FOPL contains:

1. a set of constants;
2. a set of variables;
3. a set of function symbols;
4. a set of predicates symbols;
5. the connectives ∨, ¬;
6. the quantifiers ∀, ∃, ∃1;
7. the punctuation symbols), (.

cis32-fall2005-parsons-lect15 3

Terms

• The basic components of FOL are called terms.

• Essentially, a term is an object that denotes some object other than
> or ⊥.

• The simplest kind of term is a constant.
• A value such as 8 is a constant.

• The denotation of this term is the number 8.
• Note that a constant and the number it denotes are different!
• Aliens don’t write “8” for the number 8, and nor did the Romans.

cis32-fall2005-parsons-lect15 4

• The second simplest kind of term is a variable.
• A variable can stand for anything in the domain of discourse.
• The domain of discourse (usually abbreviated to domain) is the

set of all objects under consideration.
• Sometimes, we assume the set contains “everything”.

• Sometimes, we explicitly give the set, and state what
variables/constants can stand for.

cis32-fall2005-parsons-lect15 5

Functions

• We can now introduce a more complex class of terms —
functions.

• The idea of functional terms in logic is similar to the idea of a
function in programming: recall that in programming, a function
is a procedure that takes some arguments, and returns a value.
In Modula-2:

PROCEDURE f(a1:T1; ...; an:Tn) : T;

this function takes n arguments; the first is of type T1, the second
is of type T2, and so on. The function returns a value of type T.

• In FOL, we have a set of function symbols; each symbol
corresponds to a particular function. (It denotes some function.)

cis32-fall2005-parsons-lect15 6

• Each function symbol is associated with a number called its arity.
This is just the number of arguments it takes.

• A functional term is built up by applying a function symbol to the
appropriate number of terms.

• Formally . . .
Definition: Let f be an arbitrary function symbol of arity n. Also,
let τ1, . . . , τn be terms. Then

f (τ1, . . . , τn)

is a functional term.

cis32-fall2005-parsons-lect15 7

• All this sounds complicated, but isn’t. Consider a function plus,
which takes just two arguments, each of which is a number, and
returns the first number added to the second.
Then:

– plus(2, 3) is an acceptable functional term;
– plus(0, 1) is acceptable;
– plus(plus(1, 2), 4) is acceptable;
– plus(plus(plus(0, 1), 2), 4) is acceptable;

cis32-fall2005-parsons-lect15 8

• In maths, we have many functions; the obvious ones are

+ − / ∗ √
sin cos . . .

• The fact that we write

2 + 3

instead of something like

plus(2, 3)

is just convention, and is not relevant from the point of view of
logic; all these are functions in exactly the way we have defined.

cis32-fall2005-parsons-lect15 9

• Using functions, constants, and variables, we can build up
expressions, e.g.:

(x + 3) ∗ sin 90

(which might just as well be written

times(plus(x, 3), sin(90))

for all it matters.)

cis32-fall2005-parsons-lect15 10

Predicates
• In addition to having terms, FOL has relational operators, which

capture relationships between objects.
• The language of FOL contains predicate symbols.
• These symbols stand for relationships between objects.
• Each predicate symbol has an associated arity (number of

arguments).
• Definition: Let P be a predicate symbol of arity n, and τ1, . . . , τn

are terms.
Then

P(τ1, . . . , τn)

is a predicate, which will either be > or ⊥ under some
interpretation.

cis32-fall2005-parsons-lect15 11

• EXAMPLE. Let gt be a predicate symbol with the intended
interpretation ‘greater than’. It takes two arguments, each of
which is a natural number.
Then:

– gt(4, 3) is a predicate, which evaluates to >;
– gt(3, 4) is a predicate, which evaluates to ⊥.

• The following are standard mathematical predicate symbols:

> < = ≥ ≤ 6= . . .

• The fact that we are normally write x > y instead of gt(x, y) is just
convention.

cis32-fall2005-parsons-lect15 12

• We can build up more complex predicates using the connectives
of propositional logic:

(2 > 3) ∧ (6 = 7) ∨ (
√

4 = 2)

• So a predicate just expresses a relationship between some values.

• What happens if a predicate contains variables: can we tell if it is
true or false?
Not usually; we need to know an interpretation for the variables.

• A predicate that contains no variables is a proposition.

cis32-fall2005-parsons-lect15 13

• Predicates of arity 1 are called properties.
• EXAMPLE. The following are properties:

Man(x)
Mortal(x)
Malfunctioning(x).

• We interpret P(x) as saying x is in the set P.

• Predicate that have arity 0 (i.e., take no arguments) are called
primitive propositions.
These are identical to the primitive propositions we saw in
propositional logic.

cis32-fall2005-parsons-lect15 14

Quantifiers

• We now come to the central part of first order logic: quantification.

• Consider trying to represent the following statements:

– all men have a mother;
– every positive integer has a prime factor.

• We can’t represent these using the apparatus we’ve got so far;
we need quantifiers.

cis32-fall2005-parsons-lect15 15

• We use three quantifers:

∀ — the universal quantifier;
is read ‘for all. . . ’

∃ — the existential quantifier;
is read ‘there exists. . . ’

∃1 — the unique quantifier;
is read ‘there exists a unique. . . ’

cis32-fall2005-parsons-lect15 16

• The simplest form of quantified formula is as follows:

quantifier variable · predicate

where

– quantifier is one of ∀, ∃, ∃1;
– variable is a variable;
– and predicate is a predicate.

cis32-fall2005-parsons-lect15 17

Examples

• ∀x · Man(x) ⇒ Mortal(x)

‘For all x, if x is a man, then x is mortal.’
(i.e. all men are mortal)

• ∀x · Man(x) ⇒ ∃1y · Woman(y) ∧ MotherOf (x, y)

‘For all x, if x is a man, then there exists exactly one y such that y
is a woman and the mother of x is y.’
(i.e., every man has exactly one mother).

cis32-fall2005-parsons-lect15 18

• ∃m · Monitor(m) ∧ MonitorState(m, ready)

‘There exists a monitor that is in a ready state.’

• ∀r · Reactor(r) ⇒ ∃1t · (100 ≤ t ≤ 1000) ∧ temp(r) = t

‘Every reactor will have a temperature in the range 100 to 1000.’

cis32-fall2005-parsons-lect15 19

• ∃n · posInt(n) ∧ n = (n ∗ n)

‘Some positive integer is equal to its own square.’

• ∃c · ECCountry(c) ∧ Borders(c, Albania)

‘Some EC country borders Albania.’

• ∀m, n · Person(m) ∧ Person(n) ⇒ ¬Superior(m, n)

‘No person is superior to another.’
• ∀m · Person(m) ⇒ ¬∃n · Person(n) ∧ Superior(m, n)

Ditto.

cis32-fall2005-parsons-lect15 20

Domains & Interpretations

• Suppose we have a formula ∀x · P(x).
What does x range over?
Physical objects, numbers, people, times, . . . ?

• Depends on the domain that we intend.
• Often, we name a domain to make our intended interpretation

clear.

cis32-fall2005-parsons-lect15 21

• Suppose our intended interpretation is the +ve integers.
Suppose >, +, ∗, . . . have the usual mathematical interpretation.

• Is this formula satisfiable under this interpretation?

∃n · n = (n ∗ n)

• Now suppose that our domain is all living people, and that ∗
means “is the child of”.

• Is the formula satisfiable under this interpretation?

cis32-fall2005-parsons-lect15 22

Comments
• Note that universal quantification is similar to conjunction.

Suppose the domain is the numbers {2, 4, 6}. Then

∀n · Even(n)

is the same as

Even(2) ∧ Even(4) ∧ Even(6).

• Existential quantification is the same as disjunction. Thus with
the same domain,

∃n · Even(n)

is the same as

Even(2) ∨ Even(4) ∨ Even(6).

cis32-fall2005-parsons-lect15 23

• The universal and existential quantifiers are in fact duals of each
other:

∀x · P(x) ⇔ ¬∃x · ¬P(x)

Saying that everything has some property is the same as saying that
there is nothing that does not have the property.

∃x · P(x) ⇔ ¬∀x · ¬P(x)

Saying that there is something that has the property is the same as
saying that its not the case that everything doesn’t have the property.

cis32-fall2005-parsons-lect15 24

Decidability

• In propositional logic, we saw that some formulae were
tautologies — they had the property of being true under all
interpretations.

• We also saw that there was a procedure which could be used to
tell whether any formula was a tautology — this procedure was
the truth-table method.

• A formula of FOL that is true under all interpretations is said to
be valid.

• So in theory we could check for validity by writing down all the
possible interpretations and looking to see whether the formula
is true or not.

cis32-fall2005-parsons-lect15 25

• Unfortuately in general we can’t use this method.
• Consider the formula:

∀n · Even(n) ⇒ ¬Odd(n)

• There are an infinite number of interpretations.

• Is there any other procedure that we can use, that will be
guaranteed to tell us, in a finite amount of time, whether a FOL
formula is, or is not, valid?

• The answer is no.
• FOL is for this reason said to be undecidable.

cis32-fall2005-parsons-lect15 26

Proof in FOL

• Proof in FOL is similar to PL; we just need an extra set of rules,
to deal with the quantifiers.

• FOL inherits all the rules of PL.
• To understand FOL proof rules, need to understand substitution.

• The most obvious rule, for ∀-E.
Tells us that if everything in the domain has some property, then
we can infer that any particular individual has the property.

` ∀x · φ(x); ∀-E
` φ(a)

for any a in the domain

Going from general to specific.

cis32-fall2005-parsons-lect15 27

• Example 1.
Let’s use ∀-E to get the Socrates example out of the way.

Man(s); ∀x · Man(x) ⇒ Mortal(x)
` Mortal(s)

1. Man(s) Given
2. ∀x · Man(x) ⇒ Mortal(x) Given
3. Man(s) ⇒ Mortal(s) 2, ∀-E
4. Mortal(s) 1, 3, ⇒-E

cis32-fall2005-parsons-lect15 28

• We can also go from the general to the slightly less specific!

` ∀x · φ(x); ∃-I(1)
` ∃x · φ(x)

if domain not empty

Note the side condition.
The ∃ quantifier asserts the existence of at least one object.
The ∀ quantifier does not.

cis32-fall2005-parsons-lect15 29

• We can also go from the very specific to less specific.

` φ(a); ∃-I(2)
` ∃x · φ(x)

• In other words once we have a concrete example, we can infer
there exists something with the property of that example.

cis32-fall2005-parsons-lect15 30

• We often informally make use of arguments along the lines. . .

1. We know somebody is the murderer.
2. Call this person a.
3. . . .

(Here, a is called a Skolem constant.)
• We have a rule which allows this, but we have to be careful how

we use it!

` ∃x · φ(x); ∃-E
` φ(a)

a doesn’t occur elsewhere

cis32-fall2005-parsons-lect15 31

• Here is an invalid use of this rule:

1. ∃x · Boring(x) Given
2. Lecture(AI) Given
3. Boring(AI) 1, ∃-E

• (The conclusion may be true, the argument isn’t sound.)

cis32-fall2005-parsons-lect15 32

• Another kind of reasoning:

– Let a be arbitrary object.
– . . . (some reasoning) . . .
– Therefore a has property φ

– Since a was arbitrary, it must be that every object has property
a.

• Common in mathematics:

Consider a positive integer n . . . so n is either a prime
number or divisible by a smaller prime number . . . so every
positive integer is either a prime number or divisible by a
smaller prime number.

cis32-fall2005-parsons-lect15 33

• If we are careful, we can also use this kind of reasoning:

` φ(a); ∀-I
` ∀x · φ(x)

a is arbitrary

• Invalid use of this rule:

1. Boring(AI) Given
2. ∀x · Boring(x) 1, ∀-I

cis32-fall2005-parsons-lect15 34

• Example 2:

1. Everybody is either happy or rich.
2. Simon is not rich.
3. Therefore, Simon is happy.

Predicates:

– H(x) means x is happy;
– R(x) means x is rich.

• Formalisation:

∀x.H(x) ∨ R(x);¬R(Simon) ` H(Simon)

cis32-fall2005-parsons-lect15 35

1. ∀x.H(x) ∨ R(x) Given
2. ¬R(Simon) Given
3. H(Simon) ∨ R(Simon) 1, ∀-E
4. ¬H(Simon) ⇒ R(Simon) 3, defn ⇒
5. ¬H(Simon) Ass |
6. R(Simon) 4, 5, ⇒-E |
7. R(Simon) ∧ ¬R(Simon) 2, 6, ∧-I |
8. ¬¬H(Simon) 5, 7, ¬-I
9. H(Simon) ⇔ ¬¬H(Simon) PL axiom

10. (H(Simon) ⇒ ¬¬H(Simon))
∧(¬¬H(Simon) ⇒ H(Simon)) 9, defn ⇔

11. ¬¬H(Simon) ⇒ H(Simon) 10,∧-E
12. H(Simon) 8, 11, ⇒-E

cis32-fall2005-parsons-lect15 36

Summary

• This lecture looked at predicate (or first order) logic.
• Predicate logic is a generalisation of propositional logic.
• The generalisation requires the use of quantifiers, and these need

special rules for handling them when doing inference.
• We looked at how the proof rules for propositional logic need to

be extended to handle quantifiers.

cis32-fall2005-parsons-lect15 37

