PREDICATE LOGIC

First-Order Logic

• Aim of this lecture:

to introduce *first-order predicate logic*.

- *More expressive* than propositional logic.
- Consider the following argument:
 - all monitors are ready;
 - X12 is a monitor;
 - therefore X12 is ready.
- Sense of this argument *cannot* be captured in propositional logic.
- Propositional logic is too *coarse grained* to allow us to represent and reason about this kind of statement.

Syntax

- We shall now introduce a generalisation of propositional logic called first-order logic (FOL). This new logic affords us much greater expressive power.
- **Definition:** The alphabet of FOPL contains:
 - 1. a set of *constants*;
 - 2. a set of *variables*;
 - 3. a set of *function symbols*;
 - 4. a set of *predicates symbols*;
 - 5. the connectives \lor, \neg ;
 - 6. the *quantifiers* \forall , \exists , \exists ₁;
 - 7. the punctuation symbols), (.

Terms

- The basic components of FOL are called *terms*.
- Essentially, a term is an object that *denotes* some object other than \top or \perp .
- The simplest kind of term is a *constant*.
- A value such as 8 is a constant.
- The *denotation* of this term is the number 8.
- Note that a constant and the number it denotes are different!
- Aliens don't write "8" for the number 8, and nor did the Romans.

- The second simplest kind of term is a *variable*.
- A variable can stand for anything in the *domain of discourse*.
- The domain of discourse (usually abbreviated to domain) is the set of all objects under consideration.
- Sometimes, we assume the set contains "everything".
- Sometimes, we explicitly *give* the set, and *state* what variables/constants can stand for.

Functions

- We can now introduce a more complex class of terms *functions*.
- The idea of functional terms in logic is similar to the idea of a function in programming: recall that in programming, a function is a procedure that takes some arguments, and *returns a value*. In Modula-2:

```
PROCEDURE f(al:T1; ...; an:Tn) : T;
```

this function takes *n* arguments; the first is of type T1, the second is of type T2, and so on. The function returns a value of type T.

• In FOL, we have a set of *function symbols*; each symbol corresponds to a particular function. (It denotes some function.)

- Each function symbol is associated with a number called its *arity*. This is just the number of arguments it takes.
- A *functional term* is built up by *applying* a function symbol to the appropriate number of terms.
- Formally ...

Definition: Let *f* be an arbitrary function symbol of arity *n*. Also, let τ_1, \ldots, τ_n be terms. Then

$$f(\tau_1,\ldots,\tau_n)$$

is a functional term.

- All this sounds complicated, but isn't. Consider a function *plus*, which takes just two arguments, each of which is a number, and returns the first number added to the second.
 Then:
 - plus(2,3) is an acceptable functional term;
 - plus(0, 1) is acceptable;
 - plus(plus(1, 2), 4) is acceptable;
 - plus(plus(0, 1), 2), 4) is acceptable;

• In maths, we have many functions; the obvious ones are

$$+ - / * \sqrt{\sin \cos \ldots}$$

• The fact that we write

$$2 + 3$$

instead of something like

plus(2,3)

is just convention, and is not relevant from the point of view of logic; all these are functions in exactly the way we have defined.

• Using functions, constants, and variables, we can build up *expressions*, e.g.:

 $(x+3) * \sin 90$

(which might just as well be written

times(plus(x, 3), sin(90))

for all it matters.)

Predicates

- In addition to having terms, FOL has *relational operators*, which capture *relationships* between objects.
- The language of FOL contains *predicate symbols*.
- These symbols stand for *relationships between objects*.
- Each predicate symbol has an associated *arity* (number of arguments).
- **Definition:** Let *P* be a predicate symbol of arity *n*, and τ_1, \ldots, τ_n are terms.

Then

$$P(\tau_1,\ldots,\tau_n)$$

is a predicate, which will either be \top or \bot under some interpretation.

• EXAMPLE. Let *gt* be a predicate symbol with the intended interpretation 'greater than'. It takes two arguments, each of which is a natural number.

Then:

- gt(4,3) is a predicate, which evaluates to \top ;
- gt(3, 4) is a predicate, which evaluates to \bot .
- The following are standard mathematical predicate symbols:

> < = $\geq \leq \neq \ldots$

• The fact that we are normally write *x* > *y* instead of *gt*(*x*, *y*) is just convention.

• We can build up more complex predicates using the connectives of propositional logic:

 $(2 > 3) \land (6 = 7) \lor (\sqrt{4} = 2)$

- So a predicate just expresses a relationship between some values.
- What happens if a predicate contains *variables*: can we tell if it is true or false?

Not usually; we need to know an *interpretation* for the variables.

• A predicate that contains no variables is a proposition.

- Predicates of arity 1 are called *properties*.
- EXAMPLE. The following are properties:

Man(x)Mortal(x)Malfunctioning(x).

- We interpret P(x) as saying x is in the set P.
- Predicate that have arity 0 (i.e., take no arguments) are called *primitive propositions*.

These are identical to the primitive propositions we saw in propositional logic.

Quantifiers

- We now come to the central part of first order logic: *quantification*.
- Consider trying to represent the following statements:
 - all men have a mother;
 - *every positive integer has a prime factor.*
- We can't represent these using the apparatus we've got so far; we need *quantifiers*.

• We use three quantifers:

- ∀ *the universal quantifier;*is read 'for all...'
- ∃ *the existential quantifier;* is read 'there exists...'
- \exists_1 *the unique quantifier;* is read 'there exists a unique...'

• The simplest form of quantified formula is as follows:

quantifier variable · predicate

where

- *quantifier* is one of \forall , \exists , \exists ₁;
- *variable* is a variable;
- and *predicate* is a predicate.

Examples

- ∀x · Man(x) ⇒ Mortal(x)
 'For all x, if x is a man, then x is mortal.'
 (i.e. all men are mortal)
- $\forall x \cdot Man(x) \Rightarrow \exists_1 y \cdot Woman(y) \land MotherOf(x, y)$

'For all *x*, if *x* is a man, then there exists exactly one *y* such that *y* is a woman and the mother of *x* is *y*.'

(i.e., every man has exactly one mother).

- ∃*m* · *Monitor*(*m*) ∧ *MonitorState*(*m*, *ready*)
 'There exists a monitor that is in a ready state.'
- $\forall r \cdot Reactor(r) \Rightarrow \exists_1 t \cdot (100 \le t \le 1000) \land temp(r) = t$

'Every reactor will have a temperature in the range 100 to 1000.'

• $\exists n \cdot posInt(n) \land n = (n * n)$

'Some positive integer is equal to its own square.'

- $\exists c \cdot ECCountry(c) \land Borders(c, Albania)$ 'Some EC country borders Albania.'
- ∀*m*, *n* · Person(*m*) ∧ Person(*n*) ⇒ ¬Superior(*m*, *n*)
 'No person is superior to another.'
- $\forall m \cdot Person(m) \Rightarrow \neg \exists n \cdot Person(n) \land Superior(m, n)$ Ditto.

Domains & Interpretations

- Suppose we have a formula ∀x · P(x).
 What does *x* range over?
 Physical objects, numbers, people, times, ...?
 - Thysical objects, numbers, people, times, ...
- Depends on the *domain* that we intend.
- Often, we *name* a domain to make our intended interpretation clear.

- Suppose our intended interpretation is the +ve integers.
 Suppose >, +, *, ... have the usual mathematical interpretation.
- Is this formula *satisfiable* under this interpretation?

$$\exists n \cdot n = (n * n)$$

- Now suppose that our domain is all living people, and that * means "is the child of".
- Is the formula satisfiable under this interpretation?

Comments

• Note that universal quantification is similar to conjunction. Suppose the domain is the numbers {2,4,6}. Then

 $\forall n \cdot Even(n)$

is the same as

 $Even(2) \wedge Even(4) \wedge Even(6).$

• Existential quantification is the same as *disjunction*. Thus with the same domain,

 $\exists n \cdot Even(n)$

is the same as

```
Even(2) \lor Even(4) \lor Even(6).
```

• The universal and existential quantifiers are in fact *duals* of each other:

$$\forall x \cdot P(x) \iff \neg \exists x \cdot \neg P(x)$$

Saying that everything has some property is the same as saying that there is nothing that does not have the property.

 $\exists x \cdot P(x) \iff \neg \forall x \cdot \neg P(x)$

Saying that there is something that has the property is the same as saying that its not the case that everything doesn't have the property.

Decidability

- In propositional logic, we saw that some formulae were tautologies they had the property of being true under all interpretations.
- We also saw that there was a procedure which could be used to tell whether any formula was a tautology this procedure was the truth-table method.
- A formula of FOL that is true under all interpretations is said to be *valid*.
- So in theory we could check for validity by writing down all the possible interpretations and looking to see whether the formula is true or not.

- Unfortuately in general we can't use this method.
- Consider the formula:

 $\forall n \cdot Even(n) \Rightarrow \neg Odd(n)$

- There are an infinite number of interpretations.
- Is there any other procedure that we can use, that will be guaranteed to tell us, in a finite amount of time, whether a FOL formula is, or is not, valid?
- The answer is *no*.
- FOL is for this reason said to be *undecidable*.

Proof in FOL

- Proof in FOL is similar to PL; we just need an extra set of rules, to deal with the quantifiers.
- FOL *inherits* all the rules of PL.
- To understand FOL proof rules, need to understand *substitution*.
- The most obvious rule, for \forall -E.

Tells us that if everything in the domain has some property, then we can infer that any *particular* individual has the property.

$$\frac{\vdash \forall x \cdot \phi(x);}{\vdash \phi(a)} \forall^{-E} \text{ for any } a \text{ in the domain}$$

Going from general to specific.

• Example 1.

Let's use \forall -E to get the Socrates example out of the way.

 $Man(s); \forall x \cdot Man(x) \Rightarrow Mortal(x)$ $\vdash Mortal(s)$

1.	Man(s)	Given
2.	$\forall x \cdot Man(x) \Rightarrow Mortal(x)$	Given
3.	$Man(s) \Rightarrow Mortal(s)$	2, ∀-E
4.	<i>Mortal</i> (<i>s</i>)	1, 3, ⇒-E

• We can also go from the general to the slightly less specific!

$$\frac{\vdash \forall x \cdot \phi(x);}{\vdash \exists x \cdot \phi(x)} \stackrel{\exists -I(1)}{=} \text{ if domain not empty}$$

Note the *side condition*.

The \exists quantifier *asserts the existence* of at least one object. The \forall quantifier does not. • We can also go from the very specific to less specific.

$$\vdash \phi(a); \qquad \exists -I(2) \\ \vdash \exists x \cdot \phi(x)$$

• In other words once we have a concrete example, we can infer there exists something with the property of that example.

• We often informally make use of arguments along the lines...

- 1. We know somebody is the murderer.
- 2. Call this person *a*.
- 3. ...

(Here, *a* is called a *Skolem constant*.)

• We have a rule which allows this, but we have to be careful how we use it!

 $\frac{\vdash \exists x \cdot \phi(x);}{\vdash \phi(a)} \exists -E a \text{ doesn't occur elsewhere}$

• Here is an *invalid* use of this rule:

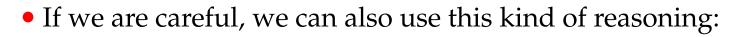
1. $\exists x \cdot Boring(x)$ Given2. Lecture(AI)Given3. Boring(AI)1, \exists -E

• (The conclusion may be true, the argument isn't sound.)

• Another kind of reasoning:

- Let *a* be arbitrary object.
- ... (some reasoning) ...
- Therefore a has property ϕ
- Since *a* was arbitrary, it must be that every object has property *a*.
- Common in mathematics:

Consider a positive integer $n \dots so n$ is either a prime number or divisible by a smaller prime number $\dots so$ every positive integer is either a prime number or divisible by a smaller prime number.



$$\frac{\vdash \phi(a);}{\vdash \forall x \cdot \phi(x)} \forall^{-\mathbf{I}} a \text{ is arbitrary}$$

• Invalid use of this rule:

1.
$$Boring(AI)$$
Given2. $\forall x \cdot Boring(x)$ 1, \forall -I

• Example 2:

- 1. Everybody is either happy or rich.
- 2. Simon is not rich.
- 3. Therefore, Simon is happy.

Predicates:

- -H(x) means *x* is happy;
- -R(x) means *x* is rich.

• Formalisation:

 $\forall x. H(x) \lor R(x); \neg R(Simon) \vdash H(Simon)$

1.	$\forall x. H(x) \lor R(x)$	Given
2.	$\neg R(Simon)$	Given
3.	$H(Simon) \lor R(Simon)$	1, ∀ - E
4.	$\neg H(Simon) \Rightarrow R(Simon)$	3, defn \Rightarrow
5.	$\neg H(Simon)$	Ass
6.	R (Simon)	4, 5, ⇒-E
7.	$R(Simon) \land \neg R(Simon)$	2, 6, ∧-I
8.	$\neg \neg H(Simon)$	5, 7, ¬-I
9.	$H(Simon) \Leftrightarrow \neg \neg H(Simon)$	PL axiom
10.	$(H(Simon) \Rightarrow \neg \neg H(Simon))$	
	$\land (\neg \neg H(Simon) \Rightarrow H(Simon))$	9, defn ⇔
11.	$\neg \neg H(Simon) \Rightarrow H(Simon)$	10,∧-E
12.	H(Simon)	8, 11, ⇒ - E

Summary

- This lecture looked at predicate (or first order) logic.
- Predicate logic is a generalisation of propositional logic.
- The generalisation requires the use of quantifiers, and these need special rules for handling them when doing inference.
- We looked at how the proof rules for propositional logic need to be extended to handle quantifiers.