

Proof as Search

- Proof problems can easily be formulated as *search*, in the way that we formulated other problems.
- Suppose we want to establish whether $\phi_1, \ldots, \phi_n \vdash \psi$.
- State space: sequence of formulae.
- Initial state: ϕ_1, \ldots, ϕ_n .
- Goal: sequence of formulae with last element ψ .
- Operators: rules, which when applied to some elements in sequence generate new formula appended to state.

- Problems:
 - no solution guaranteed perhaps non-terminating;
 - no way of knowing "right" rule to apply.
- Huge amounts of work on *heuristics for proof*.
- Small sets of sound & complete rules better ...
- resolution
 - sound & complete proof method with just 1 rule.

Resolution

- Based on *checking satisfiability* of formulae.
- Relies on the fact that

$$\phi_1,\ldots,\phi_n\vdash\psi$$

iff

$$\phi_1 \wedge \cdots \wedge \phi_n \wedge \neg \psi$$

is unsatisfiable.

• So, negate what you want to show, add it to what you know, and try to show unsatisfiability.

• The resolution rule itself is:

$$\frac{ \begin{array}{c} \vdash \phi \lor \psi \\ \vdash \chi \lor \neg \psi \end{array} }{ \vdash \phi \lor \chi} \text{ resolution }$$

- Why does this work? Reasoning by cases.
- Unsatisfiability is proved when we there is nothing left after we resolve two formulae together.

• The problem is that resolution only applies to disjunctions:

$$p \lor q \lor r \lor s \lor \dots$$

- So we can't apply the rule to arbitrary formulae.
- ...at least not without rewriting.
- It turns out that we can rewrite *any* formula in a suitable way.
- We can rewrite it as a conjunction of disjunctions of literals:

conjunctive normal form

clausal form

Consider how to do this on:

$$\neg(\phi \Rightarrow \psi) \lor (\chi \Rightarrow \phi)$$

1. Eliminate \Rightarrow :

$$\neg(\neg\phi\lor\psi)\lor(\neg\chi\lor\phi)$$

2. Move negation inwards:

$$(\phi \land \neg \psi) \lor (\neg \chi \lor \phi)$$

Using De Morgan and eliminating ¬¬

3. Turn into a conjunction of disjunctions:

$$(\phi \vee \neg \chi \vee \phi) \wedge (\neg \psi \vee \neg \chi \vee \phi)$$

then

$$(\phi \vee \neg \chi) \wedge (\neg \psi \vee \neg \chi \vee \phi)$$

Using distribution laws.

• The final output is then a set of disjunctions:

$$\phi \vee \neg \chi, \neg \psi \vee \neg \chi \vee \phi$$

- So, the "given" set of formulae, which are implicitly a conjunction, are expanded into a bigger set, all of which are disjunctions.
- We can then use resolution on this set.
- Because resolution is not complete for constructive proofs $(\phi \land \psi \models \phi \lor \psi)$, we can't proceed directly.
- But we can do proof by contradiction:
 - 1. negate the thing we want to show.
 - 2. resolve until we get the formula _, the empty clause.

- Used like this the process is:
 - complete if the goal is provable, the empty clause will be produced.
 - decidable if the goal is not provable, the process will terminate without producing the empty clause (for propositional logic).

- Consider an example in which we have a robot with some limited knowledge about the world:
 - Its battery is okay.
 - If its battery is okay, and it tries to move a liftable object, then that object will move.
 - It encounters an object that does not move.
- The question is whether the object is liftable.

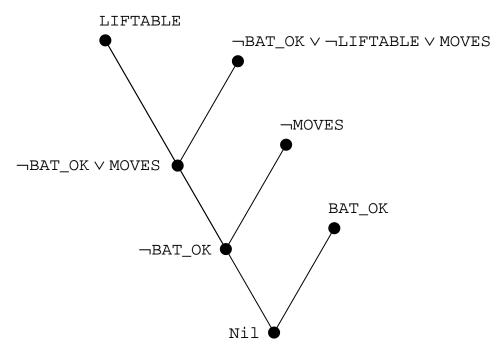
• In logic we can write this as:

 BAT_OK $BAT_OK \land LIFTABLE \Rightarrow MOVES$ $\neg MOVES$

which, in clausal form is:

 $BAT_OK \\ \neg MOVES$ $\neg BAT_OK \lor \neg LIFTABLE \lor MOVES$

• The resolution can then proceed like:



© 1998 Morgan Kaufman Publishers

- How do we choose which formulae to resolve?
- Simplest idea is *breadth-first*—resolve everything with everything.
- This works, but like all breadth-first methods generates a *huge* amount of formulae.
- Also have *unit preference*—at least one resolvent is just one literal.
- *linear input*—at least one resolvent is one of the original clauses. (not complete)
- *set of support*—at least one resolvent is a descendent of the goal.
- (Note that the example uses unit preference and set of support.)

- This gives us the machinery of resolution for propositional logic.
- What about predicate logic?
- Well, we need to take care of quantifiers and variables.
- We deal with quantifiers in the following way.
- First, we *standardize* variables. To do this we give each quantifier its own variable.

$$\forall x \cdot \phi(x) \lor \exists x \cdot \psi(x)$$

becomes

$$\forall x \cdot \phi(x) \lor \exists y \cdot \psi(y)$$

• We can then eliminate existential quantifiers.

- We do this, as we did in the proof theory we looked at before, by using Skolemisation.
- Existentially quantified variables not in the scope of universal quantifiers can be replaced by Skolem constants.

$$\exists x \cdot \phi(x)$$

becomes:

$$\phi(a)$$

where a is a new constant symbol.

• Existentially quantified variables in the scope of universally quantified variables can be replaced by Skolem functions of that variable.

$$\forall y \cdot \psi(y) \Rightarrow \exists x \cdot \phi(x, y)$$

becomes:

$$\forall y \cdot \psi(y) \Rightarrow \phi(f(y), y)$$

• If ψ is "human" and ϕ is "mother", then f(y) is the function that names everyone's mother.

- Once we have eliminated all the existential quantifers, it is easy to convert every formula into *prenex form*.
- We simply move all the universal quantfiers to the start of the formula.
- We can then get rid of the universal quantifiers.
- Every formula is implicitly universally quantified (or if it had no universal quantifiers it has no variables in it anymore).
- This gets us to a position in which we can start resolution.
- But how do we handle variables when we come to resolve?

• Clearly we can resolve:

$$\phi(x) \vee \chi(x)$$

and

$$\psi(\mathbf{y}) \vee \neg \phi(\mathbf{y})$$

to get

$$\psi(x) \vee \chi(x)$$

• But, what if the second formula was:

$$\psi(b) \vee \neg \phi(c)$$

?

- In this case it is easy.
- To resolve we have to make the $\phi(x)$ and the $\neg \phi(c)$ match.
- We do this by instantiating x to have the value c.
- That gives the resolvent $\psi(b) \vee \chi(c)$
- More generally we have to identify the *most general unifier* of any variables in the two literals being eliminated, and use these to instantiate the remaining variables in the relevant clauses.
- However, we will not go into the detail of how to do unification.

Logic-Based Agents

- When we started talking about logic, it was as a means of representing knowledge.
- We wanted to represent knowledge in order to be able to build agents.
- We now know enough about logic to do that.
- We will now see how a *logic-based agent* can be designed to perform simple tasks.
- Assume each agent has a *database*, i.e., set of FOL-formulae. These represent information the agent has about environment.

- We'll write Δ for this database.
- Also assume agent has set of *rules*. We'll write *R* for this set of rules.
- We write $\Delta \vdash_R \phi$ if the formula ϕ can be proved from the database Δ using only the rules R.
- How to program an agent: Write the agent's rules R so that it should do action a whenever $\Delta \vdash_R Do(a)$.

Here, *Do* is a predicate.

• Also assume *A* is set of actions agent can perform.

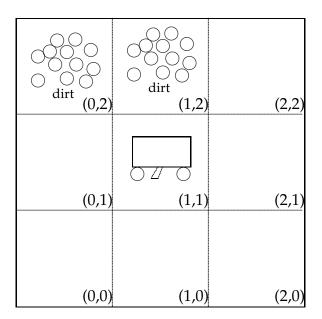
• The agent's operation:

```
for each a in A do
2.
               if \Delta \vdash_R Do(a) then
3.
                       return a
4.
               end-if
5.
       end-for
6.
       for each a in A do
7.
               if \Delta \not\vdash_R \neg Do(a) then
8.
                       return a
9.
               end-if
10.
      end-for
11.
       return null
```

• An example:

We have a small robot that will clean up a house. The robot has sensor to tell it whether it is over any dirt, and a vacuum that can be used to suck up dirt. Robot always has an orientation (one of n, s, e, or w). Robot can move forward one "step" or turn right 90° . The agent moves around a room, which is divided grid-like into a number of equally sized squares. Assume that the room is a 3×3 grid, and agent starts in square (0,0) facing north.

• Illustrated:



• Three *domain predicates* in this exercise:

In(x, y) agent is at (x, y) Dirt(x, y) there is dirt at (x, y)Facing(d) the agent is facing direction d

• For convenience, we write rules as:

$$\phi(\ldots) \longrightarrow \psi(\ldots)$$

• First rule deals with the basic cleaning action of the agent

$$In(x, y) \wedge Dirt(x, y) \longrightarrow Do(suck)$$
 (1)

• Hardwire the basic navigation algorithm, so that the robot will always move from (0,0) to (0,1) to (0,2) then to (1,2), (1,1) and so on.

• Once agent reaches (2, 2), it must head back to (0, 0).

$$In(0,0) \wedge Facing(north) \wedge \neg Dirt(0,0) \longrightarrow Do(forward)$$
 (2)

$$In(0,1) \wedge Facing(north) \wedge Dirt(0,1) \longrightarrow Do(forward)$$
 (2)

$$In(0,1) \wedge Facing(north) \wedge \neg Dirt(0,1) \longrightarrow Do(forward)$$
 (3)

$$In(0,2) \wedge Facing(north) \wedge \neg Dirt(0,2) \longrightarrow Do(turn)$$
 (4)

$$In(0,2) \wedge Facing(east) \longrightarrow Do(forward)$$
 (5)

- Other considerations:
 - adding new information after each move/action;
 - removing old information.
- Suppose we scale up to 10×10 grid?

Summary

- This lecture covered two logic-related topics.
- First is covered mechanical theorem proving:
 - Pointed out some problems.
 - Suggested resolution as a solution.
- Next we looked at how logic might be used to program an agent.
 - Assumes we have a theorem prover.