
PROBLEM SOLVING AGENTS

Overview

Aims of the this lecture:

• introduce problem solving;

• introduce goal formulation;

• show how problems can be stated as state space search;

• show the importance and role of abstraction;

• introduce undirected search:

– breadth 1st search;

– depth 1st search.

• define main performance measures for search.

cis32-spring2009-parsons-lect07 2

Problem Solving Agents

• Lecture 1 introduced rational agents.

• Now consider agents as problem solvers:

Systems which set themselves goals and find sequences of actions
that achieve these goals.

• What is a problem?

A goal and a means for achieving the goal.

• The goal specifies the state of affairs we want to bring about.

• The means specifies the operations we can perform in an attempt
to bring about the means.

• The difficulty is deciding which operations and what order to
carry out the operations.

cis32-spring2009-parsons-lect07 3

• Operation of problem solving agent:

/* s is sequence of actions */
repeat {

percept = observeWorld();
state = updateState(state, p);
if s is empty then {

goal = formulateGoal(state);
prob = formulateProblem(state, goal);
s = search(prob);

}
action = first(s);
s = remainder(s);

}
until false; /* i.e., forever */

cis32-spring2009-parsons-lect07 4

• Key difficulties:

– formulateGoal(...)

– formulateProblem(...)

– search(...)

• It isn’t easy to see how to tackle any of these.

• Here we will concentrate mainly on search.

cis32-spring2009-parsons-lect07 5

Goal Formulation

• Where do an agent’s goals come from?

– Agent is a program with a specification.

– Specification is to maximise performance measure.

– Should adopt goal if achievement of that goal will maximise
this measure.

• Goals provide a focus and filter for decision-making:

– focus: need to consider how to achieve them;

– filter: need not consider actions that are incompatible with
goals.

• For this course, we will assume that an agent is given its goals.

cis32-spring2009-parsons-lect07 6

Problem Formulation

• Once goal is determined, formulate the problem to be solved.

• First determine set of possible states S of the problem.

• Then problem has:

– initial state — the starting point, s0;

– operations — the actions that can be performed, {o1, . . . , on}.

– goal —what you are aiming at — subset of S.

cis32-spring2009-parsons-lect07 7

• The initial state together with operations determines state space
of problem.

• Operations cause changes in state.

• Solution is a sequence of actions such that when applied to
initial state s0, we have goal state.

• What does this look like?

cis32-spring2009-parsons-lect07 8

Examples of Toy Problems

• Example 1: The 8 puzzle.

Do the following transformation, moving tile from occupied
space to filled space.

1

2 8

6

3

4

7 5

2

7

1 3

5

4

6

8

cis32-spring2009-parsons-lect07 9

• Initial state as shown above.

• Goal state as shown above.

• Operations:

– o1: move any tile to left of empty square to right;

– o2: ?

– o3: ?

– o4: ?

cis32-spring2009-parsons-lect07 10

• What state space does this define?

cis32-spring2009-parsons-lect07 11

• Example 2: The n queens problem from chess.

• Place n queens on chess board so that no queen can be taken by
another.

• Initial state: empty chess board.

• Goal state: n queens on chess board, one occupying each space,
so that none can take others.

• Operations: place queen in empty square.

cis32-spring2009-parsons-lect07 12

Solution Cost

• For most problems, some solutions are better than others:

– in 8 puzzle, number of moves to get to solution;

– number of moves to checkmate;

– length of distance to travel.

• Mechanism for determining cost of solution is path cost function.

• This is the length of the path through the state-space from the
initial state to the goal state.

cis32-spring2009-parsons-lect07 13

• As an example, consider the following state in the 8-puzzle:

7 5

2 8 3

1 6 4

• How many moves are there to the solution?

cis32-spring2009-parsons-lect07 14

• There are five moves:

1.

2.

3.

4.

5.

• What are they?

• What does the path through the solution space look like?

cis32-spring2009-parsons-lect07 15

Problem Solving as Search

• In the state space view of the world, finding a solution is finding
a path through the state space.

• When we solve a problem like the 8-puzzle we have some idea
of what constitutes the next best move.

• It is hard to program this kind of approach.

• Instead we start by programming the kind of repetitive task that
computers are good at.

• A brute force approach to problem solving involves exhaustively
searching through the space of all possible action sequences to find
one that achieves goal.

cis32-spring2009-parsons-lect07 16

• Systematically generate a search tree

• The tree is built by taking the initial state and identifying some
states that can be obtained by applying a single operator.

• These new states become the children of the initial state in the
tree.

• These new states are then examined to see if they are the goal
state.

• If not, the process is repeated on the new states.

• We can formalise this description by giving an algorithm for it.

cis32-spring2009-parsons-lect07 17

• General algorithm for search:

agenda = initial state;
while agenda not empty do{

pick node from agenda;
new nodes = apply operations to state;
if goal state in new nodes
then {

return solution;
}

add new nodes to agenda;
}

cis32-spring2009-parsons-lect07 18

• Note the difference between state space and search tree.

• State space is every possible state and the relationships between
them.

– It is static.

• Search tree the set of states the agent has looked at (is looking at)
and some of the relationships between them.

– It is dynamic.

cis32-spring2009-parsons-lect07 19

• Question: How to pick states for expansion?

• Two obvious solutions:

– depth first search;

– breadth first search.

cis32-spring2009-parsons-lect07 20

Breadth First Search

• Start by expanding initial state — gives tree of depth 1.

• Then expand all nodes that resulted from previous step — gives
tree of depth 2.

• Then expand all nodes that resulted from previous step, and so
on.

• Expand nodes at depth n before level n + 1.

cis32-spring2009-parsons-lect07 21

/* Breadth first search */

agenda = initial state;

while agenda not empty do
{

pick node from front of agenda;
new nodes = apply operations to state;
if goal state in new nodes then
{

return solution;
}

APPEND new nodes to END of agenda;
}

cis32-spring2009-parsons-lect07 22

• For the 8-puzzle as so:

7 5

2 8 3

1 6 4

• We have the following state space:

cis32-spring2009-parsons-lect07 23

2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal
nodeStart

node

© 1998 Morgan Kaufman Publishers

ci
s3
2-
sp

ri
n
g
20

09
-p
ar
so
n
s-
le
ct
07

24

• Given this numbering of the states, the agenda would look like

1. 1

2. 2, 3, 4

3. 3, 4, 5

4. 4, 5, 6, 7, 8

5. 5, 6, 7, 8, 9

6. 6, 7, 8, 9, 10, 11.

7. . . .

cis32-spring2009-parsons-lect07 25

• Advantage: guaranteed to reach a solution if one exists.

• If all solutions occur at depth n, then this is good approach.

• Disadvantage: time taken to reach solution!

• Let b be branching factor — average number of operations that
may be performed from any level.

• If solution occurs at depth d, then we will look at

1 + b + b2 + · · · + bd

nodes before reaching solution — exponential.

cis32-spring2009-parsons-lect07 26

• Time for breadth first search:

Depth Nodes Time
0 1 1 msec
1 11 .01 sec
2 111 .1 sec
4 11,111 11 secs
6 106 18 mins
8 108 31 hours
10 1010 128 days
12 1012 35 years
14 1014 2500 years
20 1020 315 years

• Combinatorial explosion!

cis32-spring2009-parsons-lect07 27

Importance of ABSTRACTION

• When formulating a problem, it is crucial to pick the right level
of abstraction.

• Example: Given the task of driving from where I used live in
Manhatatan to Boston.

• Some possible actions. . .

– depress clutch;

– turn steering wheel right 10 degrees;

. . . inappropriate level of abstraction.

Too much irrelevant detail.

cis32-spring2009-parsons-lect07 28

• Better level of abstraction:

– Take the FDR drive north

– Take the Cross County turnoff

– Merge onto the Hutchinson River Parkway

. . . and so on.

• Getting abstraction level right lets you focus on the specifics of
problem and is one way to combat the combinatorial explosion.

• (Tell that to Mapquest/Google Maps).

cis32-spring2009-parsons-lect07 29

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from 1st step, and expand it.

• Pick one of nodes resulting from 1nd step, and expand it, and so
on.

• Always expand deepest node.

• Follow one “branch” of search tree.

cis32-spring2009-parsons-lect07 30

/* Depth first search */

agenda = initial state;

while agenda not empty do
{

pick node from front of agenda;
new nodes = apply operations to state;
if goal state in new nodes then
{

return solution;
}

put new nodes on FRONT of agenda;
}

cis32-spring2009-parsons-lect07 31

• For the 8-puzzle as so:

7 5

2 8 3

1 6 4

• We have the following state space:

cis32-spring2009-parsons-lect07 32

2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal
nodeStart

node

© 1998 Morgan Kaufman Publishers

ci
s3
2-
sp

ri
n
g
20

09
-p
ar
so
n
s-
le
ct
07

33

• Given this numbering of the states, the agenda would look like

1. 1

2. 2, 3, 4

3. 5, 3, 4

4. 10, 11, 3, 4

5. 20, 11, 3, 4

6. . . .

cis32-spring2009-parsons-lect07 34

• Depth first search is not guaranteed to find a solution if one
exists.

• However, if it does find one, amount of time taken is much less
than breadth first search.

• Memory requirement is much less than breadth first search.

• Solution found is not guaranteed to be the best.

cis32-spring2009-parsons-lect07 35

Performance Measures for Search

• Completeness:

Is the search technique guaranteed to find a solution if one exists?

• Time complexity:

How many computations are required to find solution?

• Space complexity:

How much memory space is required?

• Optimality:

How good is a solution going to be w.r.t. the path cost function.

cis32-spring2009-parsons-lect07 36

Algorithmic Improvements

• Are then any algorithmic improvements we can make to basic
search algorithms that will improve overall performance?

• Try to get optimality and completeness of breadth 1st search with
space efficiency of depth 1st.

• Not too much to be done about time complexity :-(

cis32-spring2009-parsons-lect07 37

Depth Limited Search

• Depth first search has some desirable properties — space
complexity.

• But if wrong branch is expanded (with no solution on it), then it
won’t terminate.

• Idea: introduce a depth limit on branches to be expanded.

• Don’t expand a branch below this depth.

cis32-spring2009-parsons-lect07 38

• General algorithm for depth limited search:

depth limit = max depth to search to;
agenda = initial state;
while agenda not empty do

take node from front of agenda;
new nodes = apply operations to node;
if goal state in new nodes then {
return solution;

}
if depth(node) < depth limit then {
add new nodes to front of agenda;

}
}

cis32-spring2009-parsons-lect07 39

• For the 8-puzzle as so:

7 5

2 8 3

1 6 4

• We have the following state space:

cis32-spring2009-parsons-lect07 40

2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal
nodeStart

node

© 1998 Morgan Kaufman Publishers

ci
s3
2-
sp

ri
n
g
20

09
-p
ar
so
n
s-
le
ct
07

41

• Given this numbering of the states, a depth limited search with
depth limit of three would have an agenda that looks like

1. 1

2. 2, 3, 4

3. 5, 3, 4

4. 10, 11, 3, 4

5. 11, 3, 4

6. 3, 4

7. 6, 7, 8, 4

8. 12, 13, 7, 8, 4

9. 13, 7, 8, 4

10.. . .

cis32-spring2009-parsons-lect07 42

• Let’s look at the search tree in more detail:
2 8 3
1 6 4
7 50

2 8 3
1 6 4

7 51

2 8 3
6 4

1 7 52

8 3
2 6 4
1 7 53

8 3
2 6 4
1 7 54

8 3
2 6 4
1 7 55

(a)

2 8 3
1 6 4
7 50

2 8 3
1 6 4

7 51

2 8 3
6 4

1 7 52

8 3
2 6 4
1 7 5 1 7 53

8 32
6 4

7

8 3
2 6 4
1 7 54

8 3
2

6
4

1 7 56

(b)

2 8 3
1 6 4
7 50

2 8 3
1 6 4

7 51

2 8 3
6 4

1 7 52

8 32
6 4
1 7 57

8
32

6 4
1 7 58

8
32

6 4
1 7 59

(c)

Discarded before
generating node 7

© 1998 Morgan Kaufman Publishers

cis32-spring2009-parsons-lect07 43

• So, when we hit the depth bound, we don’t add any more nodes
to the agenda.

• Then we pick the next node off the agenda.

• This has the effect of moving the search back to the last node
above depth limit that that is “partly expanded”.

• This is known as chronological backtracking.

• The effect of the depth limit is to force the search of the whole
state space down to the limit.

• We get the completeness of breadth-first (down to the limit),
with the space cost of depth first.

cis32-spring2009-parsons-lect07 44

Iterative Deepening

• Unfortunately, if we choose a max depth for d.l.s. such that
shortest solution is longer, d.l.s. is not complete.

• Iterative deepening an ingenious complete version of it.

• Basic idea is:

– do d.l.s. for depth 1; if solution found, return it;

– otherwise do d.l.s. for depth n; if solution found, return it;

– otherwise, . . .

• So we repeat d.l.s. for all depths until solution found.

cis32-spring2009-parsons-lect07 45

• General algorithm for iterative deepening search:

depth limit = 1;
repeat {

result = depth_limited_search(
max depth = depth limit;
agenda = initial node;

);
if result contains goal then {
return result;

}
depth limit = depth limit + 1;

} until false; /* i.e., forever */

• Calls d.l.s. as subroutine.

cis32-spring2009-parsons-lect07 46

• The search covers the whole state space down to the depth limit.

Depth bound = 1 Depth bound = 2 Depth bound = 3 Depth bound = 4

© 1998 Morgan Kaufman Publishers

• The order it searches the nodes changes for each depth limit.

cis32-spring2009-parsons-lect07 47

• Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we
need to regenerate the tree to depth d − 1.

• Isn’t this inefficient?

• Tradeoff time for memory.

• In general we might take a littlemore time, but we save a lot of
memory.

• Now for breadth-first search to level d:

Nbf = 1 + b + b2 + . . . bd

=
bd+1 − 1

b − 1

cis32-spring2009-parsons-lect07 48

• In contrast a complete depth-limited search to level j:

N j
df =

bj+1 − 1

b − 1

• (This is just a breadth-first search to depth j.)

• In the worst case, then we have to do this to depth d, so
expanding:

Nid =
d∑

j=0

bj+1 − 1

b − 1
...

=
bd+2 − 2b − bd + d + 1

(b − 1)2

cis32-spring2009-parsons-lect07 49

• For large d:

Nid

Nbf
=

b
b − 1

• So for high branching and relatively deep goals we do a small
amount more work.

• Example: Suppose b = 10 and d = 5.

Breadth first search would require examining 111, 111 nodes,
with memory requirement of 100, 000 nodes.

Iterative deepening for same problem: 123, 456 nodes to be
searched, with memory requirement only 50 nodes.

Takes 11% longer in this case.

cis32-spring2009-parsons-lect07 50

• For the 8-puzzle setup as:

1

2 8

6

3

4

7 5

2

7

1 3

5

4

6

8

• What would iterative deepening search look like?

• Well, it would explore the state space:

cis32-spring2009-parsons-lect07 51

2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal
nodeStart

node

© 1998 Morgan Kaufman Publishers

ci
s3
2-
sp

ri
n
g
20

09
-p
ar
so
n
s-
le
ct
07

52

• In the following way.

• States would be expanded in the order:

1. 1

2. 1, 2, 3, 4

3. 1, 2, 5, 3, 6, 7, 8, 4, 9.

4. 1, 2, 5, 10, 11, 3, 6, 12, 13, 7, 14, 15, 8, 16, 17, 4, 9, 18, 19.

5. . . .

• Note that these are the states visited, not the nodes on the agenda.

cis32-spring2009-parsons-lect07 53

Bi-directional Search

• Suppose we search from the goal state backwards as well as from
initial state forwards.

• Involves determining predecessor nodes to goal, and then looking
at predecessor nodes to this, . . .

• Rather than doing one search of bd, we do two bd/2 searches.

• Muchmore efficient.

cis32-spring2009-parsons-lect07 54

• Example:

Suppose b = 10, d = 6.

Breadth first search will examine nodes.

Bidirectional search will examine nodes.

• Can combine different search strategies in different directions.

• For large d, is still impractical!

cis32-spring2009-parsons-lect07 55

Summary

• This lecture introduced the basics of problem solving.

• In particular it discussed state spacemodels and looked at the
basic techniques for solving them.

– Search for the goal.

– Path through state space is the solution.

• We also looked at two techniques for search:

– Breadth first.

– Depth first.

cis32-spring2009-parsons-lect07 56

