HEURISTIC SEARCH

Recap

The last lecture finished with
® More advanced problem solving techniques:

— Depth limited search
— Iterative deepening
— Bidirectional search

® These improved on basic techniques like breadth-first and
depth-first search.

* However, they still aren’t powerful enough to give solutions for
realistic problems.

® Are there more improvements we can make?

cis32-spring-2009-parsons-lect08

Overview

Aims of this lecture:

® To show how applying some knowledge of the problem can help.
® Introduce heuristics — rules of thumb.

® Introduce heuristic search: guided by rules of thumb which help
to decide which node to expand:

— uniform-cost search;
— greedy search;
— A* search.

cis32-spring-2009-parsons-lect08 3

Heuristic (Informed) Search

e Whatever search technique we use, exponential time complexity.
® Tweaks to the algorithm will not reduce this to polynomial.

® We need problem specific knowledge to guide the search.

e Simplest form of problem specific knowledge is heuristic.

¢ Usual implementation in search is via an evaluation function
which indicates desirability of expanding node.

cis32-spring-2009-parsons-lect08

Uniform Cost Search

® Recall we have a path cost function,

g: Nodes — R
which gives cost to each path.
e Why not expand the cheapest path first?

e Intuition: cheapest is likely to be best!

cis32-spring-2009-parsons-lect08

® General algorithm for uniform cost search:

agenda = initial state;
whi | e agenda not enpty do
{

t ake node from agenda such t hat
g(node) = mn { g(n) | n in agenda}

new nodes = apply operations to node;

| f goal state in new nodes then {
return sol ution;

}

el se add new nodes to agenda

cis32-spring-2009-parsons-lect08

e Uniform cost search guaranteed to find cheapest solution
assuming path costs grow monotonically.

® In other words, adding another step to the solution makes it
more costly.

o If path costs don’t grow monotonically, then exhaustive search is
required.

cis32-spring-2009-parsons-lect08

® Once again we can illustrate this on the 8-puzzle:

2 8 3 1 2 3
1 6 4 8 4
7 5 7 6 5

e For this set up, the search of the space:

cis32-spring-2009-parsons-lect08 8

Q0109[-suosred-gnoz-3urids-ggsmo

= O
T 5
Qo
O c
|| o[[w| (o] (2] 553 [Te) I (52) 5 f) <0 o] 0[] [m|0) 0| i (T2 I 2] i) B (52) il (7). < W0)|
Neofo] n~ [NJo] [©f=]w] (o =] =[] [oFo] [©Nw] (o= (o] [RSN] [@lofN] [Nl o | [efo~
] N [Heof~] [N[N[o] [Nf=o] [eo]<] [eo]NN] [Nl []o) [ol—] [fo]—] [fo]= ©of—| [oo]onf[—| [oofe][—=
% 8 .
o[D[<] [O[O]F] [@[C]F] [@[C]F] [P[W]©] [o]w] [R] [9) RS i R i o] |© [N o[NTo
O[] [oo] o|in| [oO]Hwn]| [l <[o| [@]o]o © [N|o[o Lo [®= < [[=[© ™ [®~ o [PFE= — o~ o e~
[~ [N [N [N [N[ES] [N[ES] [N]=N N H I~ o [N[~N[o o\ [0~ o [N[o]= o [N o [N]o]—= N [oo]N[—=
A A q ;ﬁ ‘ﬁ A
o< ™[O 2 2l < [0) on[SF[Lo] ™[il o< [0 o[
O (PO o0 |0} 10} OISOl (Q IOl | (OIS f [IFKS]) (OO N [l R O (oI~
e N NI N N N N I N N N e [=~ 1 [N [[~ o [fo]= [[a][=
o] & o] 0] oo[S 0] o[o] <o)
c0[©OLn cof<t{O] 0[O 0f—|© C0jo|r~
o N[~ 00 [N[—[~ N~ [[=]~] © [N N T AN
| o<t w0 ™[5
=M o] o] 0[S~ S
<t (N[N o [N[=~ o [N[= =
>
A g
c
<
£
E
>
T
X
c
OO [o) <
o[=)
o [~ W
e o EY
c O >
+—= O —
0w c ©)

e Will happen in the following way.

e States would be expanded in the order:

1. 1

2. 2,3,4

3.56,7,8,9

4. 10,11,12,13, 14, 15,16, 17, 18, 19
5. ...

® Note that this is just like breadth first search (because the path
costs are just the same).

cis32-spring-2009-parsons-lect08

10

® Instead, assume up/down moves cost 2 and left/right moves
cost 1.

e States would be expanded in the order:

1. 1
. 2,3,4
5
9
. 6,7,8

O U N

cis32-spring-2009-parsons-lect08

11

Greedy Search

® Most heuristics estimate cost of cheapest path from node to solution.

® We have a heuristic function,

h: Nodes — R

which estimates the distance from the node to the goal.

e Example: In route finding, heuristic might be straight line
distance from node to destination.

e Heuristic is said to be admissible if it never overestimates cheapest
solution.

Admissible = optimistic.

® Greedy search involves expanding node with cheapest expected cost
to solution.

cis32-spring-2009-parsons-lect08 12

® General algorithm for greedy search:

agenda = initial state;
whi | e agenda not enpty do

{

t ake node from agenda such t hat
h(node) = mn { h(n) | n in agenda}

new nodes = apply operations to node;

| f goal state in new nodes then {
return sol ution;

}

el se add new nodes to agenda

cis32-spring-2009-parsons-lect08

13

® Greedy search finds solutions quickly.
® Doesn’t always find best.
® Susceptible to false starts.
— Chases good looking options that turn out to be bad.
® Only looks at current node. Ignores past!

e Also myopic (shortsighted).

cis32-spring-2009-parsons-lect08

14

e For the 8-puzzle one good heuristic is:
— count tiles out of place.
e Another is:
— Manhattan blocks” distance
® The latter works for other problems as well:

— Robot navigation.

cis32-spring-2009-parsons-lect08

15

2[8[3
1(6[4
47¢5
218[3 2[8[3 2[8[3
1[6]4 1] [4 1[6[4
5[1715 37i5 5 [7]5
218[3 2] 13 2[8[3
114 1/8[4 1[4
AS/?(S\ 3 [7[6]5 4 [7]6]5
BEIE 2Jsls \ To the goal
3 [7]6]5 41776]5

8)
1
j
1
6

\ To more fruitless wandering

~I[No|Co

© 1998 Morgan Kaufman Publishers

cis32-spring-2009-parsons-lect08

16

A* Search

® A*is very efficient search strategy.

e Basic idea is to combine

uniform cost search
and
greedy search.

® We look at the cost so far and the estimated cost to goal.

e (Gives heuristic f:
f(n) = g(n) + h(n)
where

— g(n) is path cost of n;
— h(n) is expected cost of cheapest solution from n.

e Aims to mimimise overall cost.

cis32-spring-2009-parsons-lect08

17

® General algorithm for A* search:

agenda = initial state;
whi | e agenda not enpty do
{

t ake node from agenda such t hat
f(node) = mn { f(n) | n in agenda}
where f(n) = g(n) + h(n)

new nodes = apply operations to node;

| f goal state in new nodes then {
return sol ution;

}

el se add new nodes to agenda

cis32-spring-2009-parsons-lect08

18

¢ Considering the 8-puzzle (for the last time :-):
® We combine:

— Path cost function:

* number of moves.
— Heuristic function:

* tiles out of places.

® This gives the following search.

cis32-spring-2009-parsons-lect08

19

8[3
64
0+4 ¢5
283A/283\‘
1164 1 4
1+ 5[17[5 jL+37j€ 1+5
2[8[3 p) :\\\\\\A
14 1184
2 + 3[716]5 2 + 3[7[6]5 2+ 4
i y
8[3 218[3 213
2|14 7114 1/8]4
3 + 3[7[6]5 3+ 4[16l5 3+27i5 3+4
12[3
84
4 + 1[7]6]5
Goal /¢
1123 12[3
8| |4 71814
5+ Q[7]6]5 5+ 2[[6]5

© 1998 Morgan Kaufman Publishers

cis32-spring-2009-parsons-lect08

~[=o

NEN
u1|o|oo

~[=]n
o[p|oo

NN
o[oo

20

The optimality of A*

® A*is optimal in precise sense—it is guaranteed to find a
minimum cost path to the goal.

® There are a set of conditions under which A* will find such a
path:

1. Each node in the graph has a finite number of children.
2. All arcs have a cost greater than some positive .

3. For all nodes in the graph h(n) always underestimates the
true distance to the goal.

® The key here is the third bullet — the notion of admissibility.
e We will express this by saying a heuristic h(-) is admissible if

h(n) < hr(n)

cis32-spring-2009-parsons-lect08 21

More informed search

e [F two versions of A*, A} and A use different functions h; and h,,

e AND
hi(n) < hy(n)

for all non-goal nodes,

e THEN we say that A; is more informed than A;.

® The better informed A* is, the less nodes it has to expand to find
the minimum cost path.

cis32-spring-2009-parsons-lect08 22

® As an example of "more informed” consider the 8-puzzle:

— tiles out of place; and
— Manhattan blocks distance.

e We need h(n) to underestimate hr(n) to ensure admissibility.

® But, the closer the estimate, the easier it is to reject nodes which
are not on the optimal path.

e This means less nodes need to be searched.

cis32-spring-2009-parsons-lect08

23

Iterative deepening A*

® When we do heuristic search, we search some portion of the full
search space.

® "Focussed breadth first search”.
® So we can still hit intractability.
* Adapting iterative deepening can help us.

* Instead of a depth limit, we impose a cost limit, and do a depth
first search until it is exceeded.

® Then we backtrack, and extend the limit if we don’t find the goal.

cis32-spring-2009-parsons-lect08 24

® The initial cost cut off is set to f(ny).

e This is just the estimated cost of finding a solution h(ny).

¢ This will never overestimate the cost, so is a good start point.

e [f this cost-limit does not provide a solution, what is the next cost
limit.

e Well, if the heuristic is a good one, the cost of the cheapest path
to the goal will be the lowest f(n) of an unexpanded node.

® So we set the new cost bound to this.

® This, then is iterative deepening A* (IDA¥).

cis32-spring-2009-parsons-lect08 25

Summary

® This lecture has looked at some techniques for refining the
search space:

— uniform cost search;

— greedy search; and
— A* search.

® When these work they explore just the relevant part of the search
space.

® There are also techniques that go further than those we have
studied.

cis32-spring-2009-parsons-lect08 26

® These techniques include:

— Focussed Dynamic A* (called D*)

— D* Lite

— Delayed D*

— Life-long planning A* (called LPA¥)
- PAO*

® There are three directions we will take from here:

— Adversarial search
— Learning the state space.
— Adding in more knowledge about the domain.

cis32-spring-2009-parsons-lect08

27

