PREDICATE LOGIC

’First—Order Logic‘

e Aim of this lecture:
to introduce first-order predicate logic.

® More expressive than propositional logic.
¢ Consider the following argument:

— all robots are ready;
— X12 is a robot;
— therefore X12 is ready.

e Sense of this argument cannot be captured in propositional logic.

e Propositional logic is too coarse grained to allow us to represent
and reason about this kind of statement.

cis32-spring2009-parsons-lect13 2

Syntax

® We shall now introduce a generalisation of propositional logic
called first-order logic (FOL). This new logic affords us much
greater expressive power.

® Definition: The alphabet of FOPL contains:

1. a set of constants;

. a set of variables;

. a set of function symbols;

. a set of predicates symbols;
the connectives V, —;

. the quantifiers V, 3, 3;;

. the punctuation symbols), (.

N o Ul e W N

cis32-spring2009-parsons-lect13

¢ The basic components of FOL are called terms.

e Essentially, a term is an object that denotes some object other than
Tor L.

e The simplest kind of term is a constant.

e A value such as 8 is a constant.

e The denotation of this term is the number 8.

e Note that a constant and the value it denotes are different!

e Aliens don’t write “8” for the number 8, and nor did the Romans.

cis32-spring2009-parsons-lect13 4

® The second simplest kind of term is a variable.
e A variable can stand for anything in the domain of discourse.

® The domain of discourse (usually abbreviated to domain) is the
set of all objects under consideration.

® Sometimes, we assume the set contains “everything”.

® Sometimes, we explicitly give the set, and state what
variables/constants can stand for.

cis32-spring2009-parsons-lect13 5

Functions

® We can now introduce a more complex class of terms —
functions.

¢ The idea of functional terms in logic is similar to the idea of a
function in programming.

¢ Recall that in programming, a function is a procedure that takes
some arguments, and returns a value.

InC:
Tf(T1 a1, ..., Tn an)

this function takes n arguments; the first is of type T1, the second
is of type T2, and so on. The function returns a value of type T.

e In FOL, we have a set of function symbols; each symbol
corresponds to a particular function. (It denotes some function.)

cis32-spring2009-parsons-lect13 6

e Each function symbol is associated with a number called its arity.
This is just the number of arguments it takes.

e A functional term is built up by applying a function symbol to the
appropriate number of terms.

® Formally ...
Definition: Let f be an arbitrary function symbol of arity n. Also,
let 7, ..., m be terms. Then
f(Tlv . '77-n)

is a functional term.

cis32-spring2009-parsons-lect13 7

e All this sounds complicated, but isn’t. Consider a function plus
which takes just two arguments, each of which is a number, and
returns the first number added to the second.

Then:
- plus(2, 3) is an acceptable functional term;
- plus(0, 1) is acceptable;
- plus(plug(1, 2), 4) is acceptable;
- plus(plus(plug(0, 1), 2), 4) is acceptable;

cis32-spring2009-parsons-lect13 8

¢ In maths, we have many functions; the obvious ones are

+ =/ %/ sin cos ...
e The fact that we write
243

instead of something like

plus2, 3)

is just convention, and is not relevant from the point of view of

logic; all these are functions in exactly the way we have defined.

cis32-spring2009-parsons-lect13

¢ Using functions, constants, and variables, we can build up
expressions, e.g.:
(X4 3) *sin 90

(which might just as well be written
timegplusx, 3), sin(90))

for all it matters.)

cis32-spring2009-parsons-lect13

10

¢ In addition to having terms, FOL has relational operators, which
capture relationships between objects.

® The language of FOL contains predicate symbols.
® These symbols stand for relationships between objects.

e Each predicate symbol has an associated arity (number of
arguments).

® Definition: Let P be a predicate symbol of arity n, and 74, ..., m

are terms.
Then

P(71,...,7)

is a predicate, which will either be T or L under some
interpretation.

cis32-spring2009-parsons-lect13

e EXAMPLE. Let gtbe a predicate symbol with the intended
interpretation ‘greater than’. It takes two arguments, each of
which is a natural number.

Then:

- gt(4, 3) is a predicate, which evaluates to T;
- gt(3,4) is a predicate, which evaluates to L.

¢ The following are standard mathematical predicate symbols:

><:2§7£

e The fact that we are normally write X > y instead of gt(X, y) is just

convention.

cis32-spring2009-parsons-lect13

® We can build up more complex predicates using the connectives
of propositional logic:

2>3)A6=T)V(Vi=2)
® So a predicate just expresses a relationship between some values.

® What happens if a predicate contains variables: can we tell if it is
true or false?

Not usually; we need to know an interpretation for the variables.

e A predicate that contains no variables is a proposition.

cis32-spring2009-parsons-lect13 13

e Predicates of arity 1 are called properties.
e EXAMPLE. The following are properties:

Womarx)
Clever(x)
Powerfulx).

e We interpret P(X) as saying X is in the set P.

e Predicate that have arity O (i.e., take no arguments) are called
primitive propositions.
These are identical to the primitive propositions we saw in
propositional logic.

cis32-spring2009-parsons-lect13 14

® We now come to the central part of first order logic: quantification.
e Consider trying to represent the following statements:

— all people have a mother;
— every positive integer has a prime factor.

® We can’t represent these using the apparatus we’ve got so far;
we need quantifiers.

cis32-spring2009-parsons-lect13 15

® We use three quantifers:

V — the universal quantifier;
is read ‘for all...’
3 — the existential quantifier;
is read ‘there exists...’
3y — the unique quantifier;
is read ‘there exists a unique. ..’

cis32-spring2009-parsons-lect13 16

® The simplest form of quantified formula is as follows:

quantifier variable - predicate
where

- quantifieris one of V¥, 3, 3;;
— variableis a variable;
- and predicateis a predicate.

cis32-spring2009-parsons-lect13 17

e V/x - Persorix) = Mortal(x)
‘For all x, if X is a person, then X is mortal.’
(i.e. all people are mortal)
e vVx - Persorix) = 3;y - Womary) A MotherOf(x, y)

‘For all x, if X is a person, then there exists exactly one y such that
yis a woman and the mother of Xis y.”

(i.e., every person has exactly one mother).

cis32-spring2009-parsons-lect13 18

e Idm- Robotr) A RobotStaté, ready)
‘There exists a robot that is in the ready state.”

e ¥r - Reactofr) = 3;t- (100 <t < 1000) A tempr) =t
‘Every reactor will have a temperature in the range 100 to 1000.”

cis32-spring2009-parsons-lect13 19

e 3n- posIn{n) An= (nxn)
‘Some positive integer is equal to its own square.’
e Jc- ECCountryc) A Bordergc, Albania)
‘Some EC country borders Albania.’
e Ym, n - Persorim) A Persorin) = =Superiofm, n)
‘No person is superior to another.’
e Ym- Persorim) = —3n - Persorin) A Superiofm, n)
Ditto.

cis32-spring2009-parsons-lect13 20

]Domains & Interpretations

e Suppose we have a formula ¥x - P(X).
What does x range over?
Physical objects, numbers, people, times, ...?

® Depends on the domain that we intend.

e Often, we name a domain to make our intended interpretation
clear.

cis32-spring2009-parsons-lect13

21

¢ Suppose our intended interpretation is the +ve integers.
Suppose >, +, *, ... have the usual mathematical interpretation.

e [s this formula:
dn-n=(nxn)

satisfinble under this interpretation?

e Now suppose that our domain is all living people, and that
means “is the child of”.

¢ |s the formula satisfiable under this interpretation?

cis32-spring2009-parsons-lect13 22

Comments

e Note that universal quantification is similar to conjunction.
Suppose the domain is the numbers {2, 4, 6}. Then

vn - Everin)
is the same as
Ever(2) A Everi4) A Ever(6).

¢ Existential quantification is similar to disjunction. Thus with the
same domain,

3n - Ever(n)
is the same as

Ever(2) v Everi4) v Ever(6).

cis32-spring2009-parsons-lect13

23

¢ The universal and existential quantifiers are in fact duals of each

other:
VX P(x) < —3x--P(X)

Saying that everything has some property is the same as saying that
there is nothing that does not have the property.

- P(x) & —=Vx- —P(x)

Saying that there is something that has the property is the same as
saying that its not the case that everything doesn’t have the property.

cis32-spring2009-parsons-lect13

24

Decidability

e In propositional logic, we saw that some formulae were
tautologies — they had the property of being true under all
interpretations.

® We also saw that there was a procedure which could be used to
tell whether any formula was a tautology — this procedure was
the truth-table method.

e A formula of FOL that is true under all interpretations is said to
be valid.

® So in theory we could check for validity by writing down all the
possible interpretations and looking to see whether the formula
is true or not.

cis32-spring2009-parsons-lect13 25

¢ Unfortuately in general we can’t use this method.

e Consider the formula:
vn - Ever{n) = -0dd(n)

e There are an infinite number of interpretations.

¢ Is there any other procedure that we can use, that will be
guaranteed to tell us, in a finite amount of time, whether a FOL
formula is, or is not, valid?

e The answer is no.

e FOL is for this reason said to be undecidable.

cis32-spring2009-parsons-lect13 26

Proof in FOL

® Proof in FOL is similar to PL; we just need an extra set of rules,
to deal with the quantifiers.

o FOL inherits all the rules of PL.
e To understand FOL proof rules, need to understand substitution.

e The most obvious rule, for V-E.

Tells us that if everything in the domain has some property, then
we can infer that any particular individual has the property.

FVx-o(x); V-E
Fola)

Going from general to specific.

for any ain the domain

cis32-spring2009-parsons-lect13 27

e Example 1.
Let’s use V-E to get the Socrates example out of the way.

Persorts); ¥x - Persorix) = Mortal(x)
F Mortal(s)

1. Persorts) Given
2. Vx- Persorix) = Mortal(x) Given
3. Persoris) = Mortal(s) 2,V-E
4. Mortal(s) 1,3, =-E

cis32-spring2009-parsons-lect13 28

® We can also go from the general to the slightly less specific!

Fyx-o(x); 3-I(1)

F X (%) if domain not empty

Note the side condition.
The 3 quantifier asserts the existence of at least one object.
The V quantifier does not.

cis32-spring2009-parsons-lect13 29

® We can also go from the very specific to less specific.

F p(a); ER(0))

® In other words once we have a concrete example, we can infer
there exists something with the property of that example.

cis32-spring2009-parsons-lect13 30

® We often informally make use of arguments along the lines. ..

1. We know somebody is the murderer.
2. Call this person a.
3.

(Here, ais called a Skolem constant.)

® We have a rule which allows this, but we have to be careful how
we use it!
F3x-¢(x); 3-E
= o(a)

adoesn’t occur elsewhere

cis32-spring2009-parsons-lect13 31

e Here is an invalid use of this rule:

1. 3x- Boring(x) Given
2. LecturgAl) Given
3. Boring(Al) 1,3-E

¢ (The conclusion may be true, the argument isn’t sound.)

cis32-spring2009-parsons-lect13 32

e Another kind of reasoning;:

— Let abe arbitrary object.
— ... (some reasoning) ...
— Therefore a has property ¢
- Since awas arbitrary, it must be that every object has property
o.
e Common in mathematics:

Consider a positive integer n...so nis either a prime
number or divisible by a smaller prime number ...so every
positive integer is either a prime number or divisible by a
smaller prime number.

cis32-spring2009-parsons-lect13 33

e If we are careful, we can also use this kind of reasoning;:

F é(a);
F VX ¢(X)

e Invalid use of this rule:

1. Boring(Al)

1 ais arbitrary

Given

2. ¥x- Boring(x) 1, ¥-I

cis32-spring2009-parsons-lect13

34

e Example 2:

1. Everybody is either happy or rich.
2. Simon is not rich.
3. Therefore, Simon is happy.

Predicates:

- H(x) means x is happy;
- R(X) means X is rich.

e Formalisation:

Vx.H(x) vV R(x); “R(Simon F H(Simon

cis32-spring2009-parsons-lect13 35

—_

. Vx.H(x) VR(X)

. =R(Simon)

. H(Simon v R(Simon
. =H(Simon = R(Simon
. =H(Simon

R(Simon

. R(Simon A =R(Simon
. =—H(Simon

. H(Simon < ——=H(Simon

. (H(Simon = —~—=H(Simon)

Given
Given
1,V-E

3, defn =
As.

4,5, =-E
2,6, \-1
5,7, =1
PL axiom

A(==H(Simon = H(Simon) 9, defn <

. ~=H(Simor) = H(Simon
12.

H(Simon

cis32-spring2009-parsons-lect13

10,A-E
8,11, =-E

36

Logic-Based Agents
Log gents|

® When we started talking about logic, it was as a means of
representing knowledge.

® We wanted to represent knowledge in order to be able to build
agents.

® We now know enough about logic to do that.

® We will now see how a logic-based agent can be designed to
perform simple tasks.

e Assume each agent has a database, i.e., set of FOL-formulae.
These represent information the agent has about environment.

cis32-spring2009-parsons-lect13

37

o We'll write A for this database.

e Also assume agent has set of rules.
We'll write R for this set of rules.

e We write A g ¢ if the formula ¢ can be proved from the
database A using only the rules R.

® How to program an agent:
Write the agent’s rules R so that it should do action a whenever
A FgrDo(a).
Here, Do is a predicate.

¢ Also assume Ais set of actions agent can perform.

cis32-spring2009-parsons-lect13 38

® The agent’s operation:

1 for each ain Ado

2 if A r Do(a) then
3 return a

4, end-if

5. end-for

6 for each ain Ado

7 if A t/r —Do(a) then
8 return a

9. end-if

10. end-for

11. return null

cis32-spring2009-parsons-lect13

39

¢ An example:

We have a small robot that will clean up a house. The robot has
sensor to tell it whether it is over any dirt, and a vacuum that can
be used to suck up dirt. Robot always has an orientation (one of
n, s, € or w). Robot can move forward one “step” or turn right
90°. The agent moves around a room, which is divided grid-like
into a number of equally sized squares. Assume that the room is
a3 x 3 grid, and agent starts in square (0, 0) facing north.

cis32-spring2009-parsons-lect13 40

o Jllustrated:

o) QO ~
Soexs (%Ofic
000 | Yi©
dirt
0,2 (1,2 2,2
0,1 11 21
0,0 (1,0 (2,0

cis32-spring2009-parsons-lect13

41

e Three domain predicates in this exercise:

In(x,y) agentisat (X, y)
Dirt(x,y) there is dirt at (X,y)
Facing(d) the agent is facing direction d

e For convenience, we write rules as:

o) — ()

e First rule deals with the basic cleaning action of the agent

In(x,y) A Dirt(x,y) — Do(sucK (1)

e Hardwire the basic navigation algorithm, so that the robot will
always move from (0,0) to (0,1) to (0,2) then to (1,2), (1,1) and so
on.

cis32-spring2009-parsons-lect13 42

e Once agent reaches (2, 2), it must head back to (0, 0).

In(0,0) A Facing(north) A =Dirt (0, 0)

In(0, 1) A Facing(north) A =Dirt (0, 1)

In(0,2) A Facing north) A —Dirt(0,2) —
In(0,2) A Facing east

—

—

® Other considerations:

Do(forward)
Do(forward)
Do(turn)

Do(forward)

- adding new information after each move/action;

- removing old information.

® Suppose we scale up to 10 x 10 grid?

cis32-spring2009-parsons-lect13

)
®)
4)
()

43

Summary

e This lecture looked at predicate (or first order) logic.
e Predicate logic is a generalisation of propositional logic.

¢ The generalisation requires the use of quantifiers, and these need
special rules for handling them when doing inference.

® We looked at how the proof rules for propositional logic need to
be extended to handle quantifiers.

¢ Finally, we looked at how logic might be used to control an
agent.

cis32-spring2009-parsons-lect13 44

