
PREDICATE LOGIC

First-Order Logic

• Aim of this lecture:

to introduce first-order predicate logic.

• More expressive than propositional logic.

• Consider the following argument:

– all robots are ready;

– X12 is a robot;

– therefore X12 is ready.

• Sense of this argument cannot be captured in propositional logic.

• Propositional logic is too coarse grained to allow us to represent
and reason about this kind of statement.

cis32-spring2009-parsons-lect13 2

Syntax

• We shall now introduce a generalisation of propositional logic
called first-order logic (FOL). This new logic affords us much
greater expressive power.

• Definition: The alphabet of FOPL contains:

1. a set of constants;

2. a set of variables;

3. a set of function symbols;

4. a set of predicates symbols;

5. the connectives ∨, ¬;
6. the quantifiers ∀, ∃, ∃1;

7. the punctuation symbols), (.

cis32-spring2009-parsons-lect13 3

Terms

• The basic components of FOL are called terms.

• Essentially, a term is an object that denotes some object other than
⊤ or ⊥.

• The simplest kind of term is a constant.

• A value such as 8 is a constant.

• The denotation of this term is the number 8.

• Note that a constant and the value it denotes are different!

• Aliens don’t write “8” for the number 8, and nor did the Romans.

cis32-spring2009-parsons-lect13 4

• The second simplest kind of term is a variable.

• A variable can stand for anything in the domain of discourse.

• The domain of discourse (usually abbreviated to domain) is the
set of all objects under consideration.

• Sometimes, we assume the set contains “everything”.

• Sometimes, we explicitly give the set, and state what
variables/constants can stand for.

cis32-spring2009-parsons-lect13 5

Functions

• We can now introduce a more complex class of terms —
functions.

• The idea of functional terms in logic is similar to the idea of a
function in programming.

• Recall that in programming, a function is a procedure that takes
some arguments, and returns a value.

In C:

T f(T1 a1, ..., Tn an)

this function takes n arguments; the first is of type T1, the second
is of type T2, and so on. The function returns a value of type T.

• In FOL, we have a set of function symbols; each symbol
corresponds to a particular function. (It denotes some function.)

cis32-spring2009-parsons-lect13 6

• Each function symbol is associated with a number called its arity.
This is just the number of arguments it takes.

• A functional term is built up by applying a function symbol to the
appropriate number of terms.

• Formally . . .

Definition: Let f be an arbitrary function symbol of arity n. Also,
let τ1, . . . , τn be terms. Then

f (τ1, . . . , τn)

is a functional term.

cis32-spring2009-parsons-lect13 7

• All this sounds complicated, but isn’t. Consider a function plus,
which takes just two arguments, each of which is a number, and
returns the first number added to the second.

Then:

– plus(2, 3) is an acceptable functional term;

– plus(0, 1) is acceptable;

– plus(plus(1, 2), 4) is acceptable;

– plus(plus(plus(0, 1), 2), 4) is acceptable;

cis32-spring2009-parsons-lect13 8

• In maths, we have many functions; the obvious ones are

+ − / ∗ √
sin cos . . .

• The fact that we write

2 + 3

instead of something like

plus(2, 3)

is just convention, and is not relevant from the point of view of
logic; all these are functions in exactly the way we have defined.

cis32-spring2009-parsons-lect13 9

• Using functions, constants, and variables, we can build up
expressions, e.g.:

(x + 3) ∗ sin 90

(which might just as well be written

times(plus(x, 3), sin(90))

for all it matters.)

cis32-spring2009-parsons-lect13 10

Predicates

• In addition to having terms, FOL has relational operators, which
capture relationships between objects.

• The language of FOL contains predicate symbols.

• These symbols stand for relationships between objects.

• Each predicate symbol has an associated arity (number of
arguments).

• Definition: Let P be a predicate symbol of arity n, and τ1, . . . , τn

are terms.

Then

P(τ1, . . . , τn)

is a predicate, which will either be ⊤ or ⊥ under some
interpretation.

cis32-spring2009-parsons-lect13 11

• EXAMPLE. Let gt be a predicate symbol with the intended
interpretation ‘greater than’. It takes two arguments, each of
which is a natural number.

Then:

– gt(4, 3) is a predicate, which evaluates to ⊤;

– gt(3, 4) is a predicate, which evaluates to ⊥.

• The following are standard mathematical predicate symbols:

> < = ≥ ≤ 6= . . .

• The fact that we are normally write x> y instead of gt(x, y) is just
convention.

cis32-spring2009-parsons-lect13 12

• We can build up more complex predicates using the connectives
of propositional logic:

(2 > 3) ∧ (6 = 7) ∨ (
√

4 = 2)

• So a predicate just expresses a relationship between some values.

• What happens if a predicate contains variables: can we tell if it is
true or false?

Not usually; we need to know an interpretation for the variables.

• A predicate that contains no variables is a proposition.

cis32-spring2009-parsons-lect13 13

• Predicates of arity 1 are called properties.

• EXAMPLE. The following are properties:

Woman(x)
Clever(x)
Powerful(x).

• We interpret P(x) as saying x is in the set P.

• Predicate that have arity 0 (i.e., take no arguments) are called
primitive propositions.

These are identical to the primitive propositions we saw in
propositional logic.

cis32-spring2009-parsons-lect13 14

Quantifiers

• We now come to the central part of first order logic: quantification.

• Consider trying to represent the following statements:

– all people have a mother;

– every positive integer has a prime factor.

• We can’t represent these using the apparatus we’ve got so far;
we need quantifiers.

cis32-spring2009-parsons-lect13 15

• We use three quantifers:

∀ — the universal quantifier;

is read ‘for all. . . ’

∃ — the existential quantifier;

is read ‘there exists. . . ’

∃1 — the unique quantifier;

is read ‘there exists a unique. . . ’

cis32-spring2009-parsons-lect13 16

• The simplest form of quantified formula is as follows:

quantifier variable · predicate

where

– quantifieris one of ∀, ∃, ∃1;

– variableis a variable;

– and predicateis a predicate.

cis32-spring2009-parsons-lect13 17

Examples

• ∀x · Person(x) ⇒ Mortal(x)

‘For all x, if x is a person, then x is mortal.’

(i.e. all people are mortal)

• ∀x · Person(x) ⇒ ∃1y · Woman(y) ∧ MotherOf(x, y)

‘For all x, if x is a person, then there exists exactly one y such that
y is a woman and the mother of x is y.’

(i.e., every person has exactly one mother).

cis32-spring2009-parsons-lect13 18

• ∃m · Robot(r) ∧ RobotState(r, ready)

‘There exists a robot that is in the ready state.’

• ∀r · Reactor(r) ⇒ ∃1t · (100 ≤ t ≤ 1000) ∧ temp(r) = t

‘Every reactor will have a temperature in the range 100 to 1000.’

cis32-spring2009-parsons-lect13 19

• ∃n · posInt(n) ∧ n = (n ∗ n)

‘Some positive integer is equal to its own square.’

• ∃c · ECCountry(c) ∧ Borders(c,Albania)

‘Some EC country borders Albania.’

• ∀m, n · Person(m) ∧ Person(n) ⇒ ¬Superior(m, n)

‘No person is superior to another.’

• ∀m · Person(m) ⇒ ¬∃n · Person(n) ∧ Superior(m, n)

Ditto.

cis32-spring2009-parsons-lect13 20

Domains & Interpretations

• Suppose we have a formula ∀x · P(x).

What does x range over?

Physical objects, numbers, people, times, . . . ?

• Depends on the domain that we intend.

• Often, we name a domain to make our intended interpretation
clear.

cis32-spring2009-parsons-lect13 21

• Suppose our intended interpretation is the +ve integers.
Suppose >,+, ∗, . . . have the usual mathematical interpretation.

• Is this formula:

∃n · n = (n ∗ n)

satisfiable under this interpretation?

• Now suppose that our domain is all living people, and that ∗
means “is the child of”.

• Is the formula satisfiable under this interpretation?

cis32-spring2009-parsons-lect13 22

Comments

• Note that universal quantification is similar to conjunction.

Suppose the domain is the numbers {2, 4, 6}. Then

∀n · Even(n)

is the same as

Even(2) ∧ Even(4) ∧ Even(6).

• Existential quantification is similar to disjunction. Thus with the
same domain,

∃n · Even(n)

is the same as

Even(2) ∨ Even(4) ∨ Even(6).

cis32-spring2009-parsons-lect13 23

• The universal and existential quantifiers are in fact duals of each
other:

∀x · P(x) ⇔ ¬∃x · ¬P(x)

Saying that everything has some property is the same as saying that
there is nothing that does not have the property.

∃x · P(x) ⇔ ¬∀x · ¬P(x)

Saying that there is something that has the property is the same as
saying that its not the case that everything doesn’t have the property.

cis32-spring2009-parsons-lect13 24

Decidability

• In propositional logic, we saw that some formulae were
tautologies — they had the property of being true under all
interpretations.

• We also saw that there was a procedure which could be used to
tell whether any formula was a tautology — this procedure was
the truth-table method.

• A formula of FOL that is true under all interpretations is said to
be valid.

• So in theory we could check for validity by writing down all the
possible interpretations and looking to see whether the formula
is true or not.

cis32-spring2009-parsons-lect13 25

• Unfortuately in general we can’t use this method.

• Consider the formula:

∀n · Even(n) ⇒ ¬Odd(n)

• There are an infinite number of interpretations.

• Is there any other procedure that we can use, that will be
guaranteed to tell us, in a finite amount of time, whether a FOL
formula is, or is not, valid?

• The answer is no.

• FOL is for this reason said to be undecidable.

cis32-spring2009-parsons-lect13 26

Proof in FOL

• Proof in FOL is similar to PL; we just need an extra set of rules,
to deal with the quantifiers.

• FOL inherits all the rules of PL.

• To understand FOL proof rules, need to understand substitution.

• The most obvious rule, for ∀-E.
Tells us that if everything in the domain has some property, then
we can infer that any particular individual has the property.

⊢ ∀x · φ(x); ∀-E
⊢ φ(a)

for any a in the domain

Going from general to specific.

cis32-spring2009-parsons-lect13 27

• Example 1.

Let’s use ∀-E to get the Socrates example out of the way.

Person(s); ∀x · Person(x) ⇒ Mortal(x)
⊢ Mortal(s)

1. Person(s) Given
2. ∀x · Person(x) ⇒ Mortal(x) Given
3. Person(s) ⇒ Mortal(s) 2, ∀-E
4. Mortal(s) 1, 3,⇒-E

cis32-spring2009-parsons-lect13 28

• We can also go from the general to the slightly less specific!

⊢ ∀x · φ(x); ∃-I(1)
⊢ ∃x · φ(x)

if domain not empty

Note the side condition.

The ∃ quantifier asserts the existence of at least one object.

The ∀ quantifier does not.

cis32-spring2009-parsons-lect13 29

• We can also go from the very specific to less specific.

⊢ φ(a); ∃-I(2)
⊢ ∃x · φ(x)

• In other words once we have a concrete example, we can infer
there exists something with the property of that example.

cis32-spring2009-parsons-lect13 30

• We often informally make use of arguments along the lines. . .

1. We know somebody is the murderer.

2. Call this person a.

3. . . .

(Here, a is called a Skolem constant.)

• We have a rule which allows this, but we have to be careful how
we use it!

⊢ ∃x · φ(x); ∃-E
⊢ φ(a)

a doesn’t occur elsewhere

cis32-spring2009-parsons-lect13 31

• Here is an invalid use of this rule:

1. ∃x · Boring(x) Given
2. Lecture(AI) Given
3. Boring(AI) 1, ∃-E

• (The conclusion may be true, the argument isn’t sound.)

cis32-spring2009-parsons-lect13 32

• Another kind of reasoning:

– Let a be arbitrary object.

– . . . (some reasoning) . . .

– Therefore a has property φ

– Since awas arbitrary, it must be that every object has property
φ.

• Common in mathematics:

Consider a positive integer n . . . so n is either a prime
number or divisible by a smaller prime number . . . so every
positive integer is either a prime number or divisible by a
smaller prime number.

cis32-spring2009-parsons-lect13 33

• If we are careful, we can also use this kind of reasoning:

⊢ φ(a); ∀-I
⊢ ∀x · φ(x)

a is arbitrary

• Invalid use of this rule:

1. Boring(AI) Given
2. ∀x · Boring(x) 1, ∀-I

cis32-spring2009-parsons-lect13 34

• Example 2:

1. Everybody is either happy or rich.

2. Simon is not rich.

3. Therefore, Simon is happy.

Predicates:

– H(x) means x is happy;

– R(x) means x is rich.

• Formalisation:

∀x.H(x) ∨ R(x);¬R(Simon) ⊢ H(Simon)

cis32-spring2009-parsons-lect13 35

1. ∀x.H(x) ∨ R(x) Given
2. ¬R(Simon) Given
3. H(Simon) ∨ R(Simon) 1, ∀-E
4. ¬H(Simon) ⇒ R(Simon) 3, defn ⇒
5. ¬H(Simon) As. |
6. R(Simon) 4, 5,⇒-E |
7. R(Simon) ∧ ¬R(Simon) 2, 6, ∧-I |
8. ¬¬H(Simon) 5, 7, ¬-I
9. H(Simon) ⇔ ¬¬H(Simon) PL axiom

10. (H(Simon) ⇒ ¬¬H(Simon))
∧(¬¬H(Simon) ⇒ H(Simon)) 9, defn ⇔

11. ¬¬H(Simon) ⇒ H(Simon) 10,∧-E
12. H(Simon) 8, 11,⇒-E

cis32-spring2009-parsons-lect13 36

Logic-Based Agents

• When we started talking about logic, it was as a means of
representing knowledge.

• We wanted to represent knowledge in order to be able to build
agents.

• We now know enough about logic to do that.

• We will now see how a logic-based agent can be designed to
perform simple tasks.

• Assume each agent has a database, i.e., set of FOL-formulae.

These represent information the agent has about environment.

cis32-spring2009-parsons-lect13 37

• We’ll write ∆ for this database.

• Also assume agent has set of rules.

We’ll write R for this set of rules.

• We write ∆ ⊢R φ if the formula φ can be proved from the
database ∆ using only the rules R.

• How to program an agent:

Write the agent’s rules R so that it should do action awhenever
∆ ⊢R Do(a).

Here, Do is a predicate.

• Also assume A is set of actions agent can perform.

cis32-spring2009-parsons-lect13 38

• The agent’s operation:

1. for each a in A do
2. if ∆ ⊢R Do(a) then
3. return a
4. end-if
5. end-for
6. for each a in A do
7. if ∆ 6⊢R ¬Do(a) then
8. return a
9. end-if
10. end-for
11. return null

cis32-spring2009-parsons-lect13 39

• An example:

We have a small robot that will clean up a house. The robot has
sensor to tell it whether it is over any dirt, and a vacuum that can
be used to suck up dirt. Robot always has an orientation (one of
n, s, e, or w). Robot can move forward one “step” or turn right
90◦. The agent moves around a room, which is divided grid-like
into a number of equally sized squares. Assume that the room is
a 3 × 3 grid, and agent starts in square (0, 0) facing north.

cis32-spring2009-parsons-lect13 40

• Illustrated:

i i.....................
......
......
.

ii
i i

iii
ii

i

i
i

dirt

ii
i i

iii
ii

i

i
i

dirt

...

...

...

...

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)

cis32-spring2009-parsons-lect13 41

• Three domain predicates in this exercise:

In(x, y) agent is at (x, y)
Dirt (x, y) there is dirt at (x, y)
Facing(d) the agent is facing direction d

• For convenience, we write rules as:

φ(. . .) −→ ψ(. . .)

• First rule deals with the basic cleaning action of the agent

In(x, y) ∧ Dirt (x, y) −→ Do(suck) (1)

• Hardwire the basic navigation algorithm, so that the robot will
always move from (0, 0) to (0, 1) to (0, 2) then to (1, 2), (1, 1) and so
on.

cis32-spring2009-parsons-lect13 42

• Once agent reaches (2, 2), it must head back to (0, 0).

In(0, 0) ∧ Facing(north) ∧ ¬Dirt (0, 0) −→ Do(forward) (2)

In(0, 1) ∧ Facing(north) ∧ ¬Dirt (0, 1) −→ Do(forward) (3)

In(0, 2) ∧ Facing(north) ∧ ¬Dirt (0, 2) −→ Do(turn) (4)

In(0, 2) ∧ Facing(east) −→ Do(forward) (5)

• Other considerations:

– adding new information after each move/action;

– removing old information.

• Suppose we scale up to 10 × 10 grid?

cis32-spring2009-parsons-lect13 43

Summary

• This lecture looked at predicate (or first order) logic.

• Predicate logic is a generalisation of propositional logic.

• The generalisation requires the use of quantifiers, and these need
special rules for handling them when doing inference.

• We looked at how the proof rules for propositional logic need to
be extended to handle quantifiers.

• Finally, we looked at how logic might be used to control an
agent.

cis32-spring2009-parsons-lect13 44

