
RESOLUTION AND LOGIC-BASED AGENTS

Proof as Search

• Proof problems can easily be formulated as search, in the way
that we formulated other problems.

• Suppose we want to establish whether φ1, . . . , φn ⊢ ψ.

• State space: sequence of formulae.

• Initial state: φ1, . . . , φn.

• Goal: sequence of formulae with last element ψ.

• Operators: rules, which when applied to some elements in
sequence generate new formula appended to state.

cis32-spring2009-parsons-lect14 2

• Problems:

– no solution guaranteed — perhaps non-terminating;

– no way of knowing “right” rule to apply.

• Huge amounts of work on heuristics for proof.

• Small sets of sound & complete rules better . . .

• resolution

– sound & complete proof method with just 1 rule.

cis32-spring2009-parsons-lect14 3

Resolution

• Based on checking satisfiability of formulae.

• Relies on the fact that

φ1, . . . , φn ⊢ ψ

iff

φ1 ∧ · · · ∧ φn ∧ ¬ψ

is unsatisfiable.

• So, negate what you want to show, add it to what you know, and
try to show unsatisfiability.

cis32-spring2009-parsons-lect14 4

• The resolution rule itself is:

⊢ φ ∨ ψ
⊢ χ ∨ ¬ψ

resolution

⊢ φ ∨ χ

• Why does this work? Reasoning by cases.

• Unsatisfiability is proved when we there is nothing left after we
resolve two formulae together.

cis32-spring2009-parsons-lect14 5

• The problem is that resolution only applies to disjunctions:

p ∨ q ∨ r ∨ s ∨ . . .

• So we can’t apply the rule to arbitrary formulae.

• . . . at least not without rewriting.

• It turns out that we can rewrite any formula in a suitable way.

• We can rewrite it as a conjunction of disjunctions of literals:

conjunctive normal form

clausal form

cis32-spring2009-parsons-lect14 6

• Consider how to do this on:

¬(φ⇒ ψ) ∨ (χ⇒ φ)

1. Eliminate ⇒:
¬(¬φ ∨ ψ) ∨ (¬χ ∨ φ)

2. Move negation inwards:

(φ ∧ ¬ψ) ∨ (¬χ ∨ φ)

Using De Morgan and eliminating ¬¬

3. Turn into a conjunction of disjunctions:

(φ ∨ ¬χ ∨ φ) ∧ (¬ψ ∨ ¬χ ∨ φ)

then
(φ ∨ ¬χ) ∧ (¬ψ ∨ ¬χ ∨ φ)

Using distribution laws.

cis32-spring2009-parsons-lect14 7

• The final output is then a set of disjunctions:

φ ∨ ¬χ,¬ψ ∨ ¬χ ∨ φ

• So, the “given” set of formulae, which are implicitly a
conjunction, are expanded into a bigger set, all of which are
disjunctions.

• We can then use resolution on this set.

• Because resolution is not complete for constructive proofs
(φ ∧ ψ |= φ ∨ ψ), we can’t proceed directly.

• But we can do proof by contradiction:

1. negate the thing we want to show.

2. resolve until we get the formula , the empty clause.

cis32-spring2009-parsons-lect14 8

• Used like this the process is:

– complete — if the goal is provable, the empty clause will be
produced.

– decidable — if the goal is not provable, the process will
terminate without producing the empty clause (for
propositional logic).

cis32-spring2009-parsons-lect14 9

• Consider an example in which we have a robot with some
limited knowledge about the world:

– Its battery is okay.

– If its battery is okay, and it tries to move a liftable object, then
that object will move.

– It encounters an object that does not move.

• The question is whether the object is liftable.

cis32-spring2009-parsons-lect14 10

• In logic we can write this as:

BAT OK
BAT OK ∧ LIFTABLE ⇒ MOVES

¬MOVES

which, in clausal form is:

BAT OK
¬MOVES

¬BAT OK ∨ ¬LIFTABLE ∨ MOVES

cis32-spring2009-parsons-lect14 11

• The resolution can then proceed like:

LIFTABLE

¬BAT_OK ∨ MOVES

¬BAT_OK

¬BAT_OK ∨ ¬LIFTABLE ∨ MOVES

¬MOVES

Nil

BAT_OK

© 1998 Morgan Kaufman Publishers

cis32-spring2009-parsons-lect14 12

• How do we choose which formulae to resolve?

• Simplest idea is breadth-first—resolve everything with
everything.

• This works, but like all breadth-first methods generates a huge
amount of formulae.

• Also have unit preference—at least one resolvent is just one literal.

• linear input—at least one resolvent is one of the original clauses.
(not complete)

• set of support—at least one resolvent is a descendent of the goal.

• (Note that the example uses unit preference and set of support.)

cis32-spring2009-parsons-lect14 13

• This gives us the machinery of resolution for propositional logic.

• What about predicate logic?

• Well, we need to take care of quantifiers and variables.

• We deal with quantifiers in the following way.

• First, we standardize variables. To do this we give each quantifier
its own variable.

∀x · φ(x) ∨ ∃x · ψ(x)

becomes
∀x · φ(x) ∨ ∃y · ψ(y)

• We can then eliminate existential quantifiers.

cis32-spring2009-parsons-lect14 14

• We do this, as we did in the proof theory we looked at before, by
using Skolemisation.

• Existentially quantified variables not in the scope of universal
quantifiers can be replaced by Skolem constants.

∃x · φ(x)

becomes:
φ(a)

where a is a new constant symbol.

cis32-spring2009-parsons-lect14 15

• Existentially quantified variables in the scope of universally
quantifed variables can be replaced by Skolem functions of that
variable.

∀y · ψ(y) ⇒ ∃x · φ(x, y)

becomes:
∀y · ψ(y) ⇒ φ(f (y), y)

• If ψ is “human” and φ is “mother”, then f (y) is the function that
names everyone’s mother.

cis32-spring2009-parsons-lect14 16

• Once we have eliminated all the existential quantifers, it is easy
to convert every formula into prenex form.

• We simply move all the universal quantfiers to the start of the
formula.

• We can then get rid of the universal quantifiers.

• Every formula is implicitly universally quantified (or if it had no
universal quantifiers it has no variables in it anymore).

• This gets us to a position in which we can start resolution.

• But how do we handle variables when we come to resolve?

cis32-spring2009-parsons-lect14 17

• Clearly we can resolve:

φ(x) ∨ χ(x)

and
ψ(y) ∨ ¬φ(y)

to get
ψ(x) ∨ χ(x)

• But, what if the second formula was:

ψ(b) ∨ ¬φ(c)

?

cis32-spring2009-parsons-lect14 18

• In this case it is easy.

• To resolve we have to make the φ(x) and the ¬φ(c) match.

• We do this by instantiating x to have the value c.

• That gives the resolvent ψ(b) ∨ χ(c)

• More generally we have to identify the most general unifier of any
variables in the two literals being eliminated, and use these to
instantiate the remaining variables in the relevant clauses.

• However, we will not go into the detail of how to do unification.

cis32-spring2009-parsons-lect14 19

Logic-Based Agents

• When we started talking about logic, it was as a means of
representing knowledge.

• We wanted to represent knowledge in order to be able to build
agents.

• We now know enough about logic to do that.

• We will now see how a logic-based agent can be designed to
perform simple tasks.

• Assume each agent has a database, i.e., set of FOL-formulae.

These represent information the agent has about environment.

cis32-spring2009-parsons-lect14 20

• We’ll write ∆ for this database.

• Also assume agent has set of rules.

We’ll write R for this set of rules.

• We write ∆ ⊢R φ if the formula φ can be proved from the
database ∆ using only the rules R.

• How to program an agent:

Write the agent’s rules R so that it should do action a whenever
∆ ⊢R Do(a).

Here, Do is a predicate.

• Also assume A is set of actions agent can perform.

cis32-spring2009-parsons-lect14 21

• The agent’s operation:

1. for each a in A do
2. if ∆ ⊢R Do(a) then
3. return a
4. end-if
5. end-for
6. for each a in A do
7. if ∆ 6⊢R ¬Do(a) then
8. return a
9. end-if
10. end-for
11. return null

cis32-spring2009-parsons-lect14 22

• An example:

We have a small robot that will clean up a house. The robot has
sensor to tell it whether it is over any dirt, and a vacuum that can
be used to suck up dirt. Robot always has an orientation (one of
n, s, e, or w). Robot can move forward one “step” or turn right
90◦. The agent moves around a room, which is divided grid-like
into a number of equally sized squares. Assume that the room is
a 3 × 3 grid, and agent starts in square (0, 0) facing north.

cis32-spring2009-parsons-lect14 23

• Illustrated:

i i.....................
......
......
.

ii
i i

iii
ii

i

i
i

dirt

ii
i i

iii
ii

i

i
i

dirt

...

...

...

...

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)

cis32-spring2009-parsons-lect14 24

• Three domain predicates in this exercise:

In(x, y) agent is at (x, y)
Dirt(x, y) there is dirt at (x, y)
Facing(d) the agent is facing direction d

• For convenience, we write rules as:

φ(. . .) −→ ψ(. . .)

• First rule deals with the basic cleaning action of the agent

In(x, y) ∧ Dirt(x, y) −→ Do(suck) (1)

• Hardwire the basic navigation algorithm, so that the robot will
always move from (0, 0) to (0, 1) to (0, 2) then to (1, 2), (1, 1) and so
on.

cis32-spring2009-parsons-lect14 25

• Once agent reaches (2, 2), it must head back to (0, 0).

In(0, 0) ∧ Facing(north) ∧ ¬Dirt(0, 0) −→ Do(forward) (2)

In(0, 1) ∧ Facing(north) ∧ ¬Dirt(0, 1) −→ Do(forward) (3)

In(0, 2) ∧ Facing(north) ∧ ¬Dirt(0, 2) −→ Do(turn) (4)

In(0, 2) ∧ Facing(east) −→ Do(forward) (5)

• Other considerations:

– adding new information after each move/action;

– removing old information.

• Suppose we scale up to 10 × 10 grid?

cis32-spring2009-parsons-lect14 26

Summary

• This lecture covered two logic-related topics.

• First is covered mechanical theorem proving:

– Pointed out some problems.

– Suggested resolution as a solution.

• Next we looked at how logic might be used to program an agent.

– Assumes we have a theorem prover.

cis32-spring2009-parsons-lect14 27

