
LINEAR PLANNING

1 What is Planning?

• Key problem facing agent is deciding what to do.

• We want agents to be taskable: give them goals to achieve, have
them decide for themselves how to achieve them.

• Basic idea is to give an agent:

– representation of goal to achieve;

– knowledge about what actions it can perform; and

– knowledge about state of the world;

and to have it generate a plan to achieve the goal.

• Essentially, this is

automatic programming.

cis32-spring2009-parsons-lect15 2

Planner

goal environment
state of 

possible actions

plan to achieve goal

cis32-spring2009-parsons-lect15 3

• Question: How do we represent. . .

– goal to be achieved;

– state of environment;

– actions available to agent;

– plan itself.

• We show how all this can be done in first-order logic.

• This isn’t the only way to solve the problem, and later we’ll look
at other approaches.

cis32-spring2009-parsons-lect15 4



• We’ll illustrate the techniques with reference to the blocks world.

• Contains a robot arm, 3 blocks (A, B and C) of equal size, and a
table-top.

• Initial state:

A

B C

• Though this is a toy problem, it is a good place to start thinking
about planning.

cis32-spring2009-parsons-lect15 5

• To represent this environment, need an ontology.

On(x, y) obj x on top of obj y
OnTable(x) obj x is on the table
Clear(x) nothing is on top of obj x
Holding(x) arm is holding x

• We will also have armEmpty which we will use as abbreviation
for:

¬∃x, Holding(x)

meaning that there is no object x that is being held by the arm.

cis32-spring2009-parsons-lect15 6

• Here is a first order logic (FOL) representation of the blocks
world described above:

Clear(A)
On(A, B)
OnTable(B)
OnTable(C)
Clear(C)

• Use the closed world assumption: anything not stated is assumed
to be false.

cis32-spring2009-parsons-lect15 7

• A goal is represented as a FOL formula.

• Here is a goal:

OnTable(A) ∧ OnTable(B) ∧ OnTable(C)

• Which corresponds to the state:

B CA

• Actions are represented using a technique that was developed in
the STRIPS planner.

cis32-spring2009-parsons-lect15 8



• Each action has:

– a name

which may have arguments;

– a pre-condition list

list of facts which must be true for action to be executed;

– a delete list

list of facts that are no longer true after action is performed;

– an add list

list of facts made true by executing the action.

Each of these may contain variables.

cis32-spring2009-parsons-lect15 9

• Example 1:

The stack action occurs when the robot arm places the object x it
is holding is placed on top of object y.

Stack(x, y)
pre Clear(y) ∧ Holding(x)
del Clear(y) ∧ Holding(x)
add ArmEmpty ∧ On(x, y)

cis32-spring2009-parsons-lect15 10

• Example 2:

The unstack action occurs when the robot arm picks an object x
up from on top of another object y.

UnStack(x, y)
pre On(x, y) ∧ Clear(x) ∧ ArmEmpty
del On(x, y) ∧ ArmEmpty
add Holding(x) ∧ Clear(y)

Stack and UnStack are inverses of one-another.

cis32-spring2009-parsons-lect15 11

• Example 3:

The pickup action occurs when the arm picks up an object x from
the table.

Pickup(x)
pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty
del OnTable(x) ∧ ArmEmpty
add Holding(x)

• Example 4:

The putdown action occurs when the arm places the object x onto
the table.

PutDown(x)
pre Holding(x)
del Holding(x)
add Holding(x) ∧ ArmEmpty

cis32-spring2009-parsons-lect15 12



• What is a plan?

A sequence (list) of actions, with variables replaced by constants.

• So, to get from:

A

B C
to

B

C

A

cis32-spring2009-parsons-lect15 13

• We need the set of actions:

Unstack(A)
Putdown(A)
Pickup(B)

Stack(B, C)
Pickup(A)
Stack(A, B)

cis32-spring2009-parsons-lect15 14

Naive Planner

• In “real life”, plans contain conditionals (IF .. THEN...) and
loops (WHILE... DO...), but most simple planners cannot
handle such constructs — they construct linear plans.

• Simplest approach to planning: means-ends analysis.

• Involves backward chaining from goal to original state.

• Start by finding an action that has goal as post-condition.

Assume this is the last action in plan.

• Then figure out what the previous state would have been.

Try to find action that has this state as post-condition.

• Recurse until we end up (hopefully!) in original state.

cis32-spring2009-parsons-lect15 15

function plan(
d : WorldDesc, // initial env state
g : Goal, // goal to be achieved
p : Plan, // plan so far
A : set of actions // actions available)

1. if d |= g then
2. return p
3. else
4. choose a in A such that
5. add(a) |= g and
6. del(a) 6|= g
7. set g = pre(a)
8. append a to p
9. return plan(d, g, p, A)

cis32-spring2009-parsons-lect15 16



• As we discussed in class, this doesn’t quite specify the operation
of the planner correctly.

• (Though it comes close I think).

• Line 5 tries to capture the idea that we pick a so that the result of
action a will achieve some part of the goal.

• Similarly, line 6 tries to capture the idea that the items in the
delete list of a are not part of the goal.

• Then line 7 tries to say that you add any preconditions of a that
aren’t already true to the set of things that still have to be
achieved in order to satisfy the goal.

cis32-spring2009-parsons-lect15 17

• How does this work on the previous example?

cis32-spring2009-parsons-lect15 18

• This algorithm not guaranteed to find the plan. . .

• . . . but it is sound: If it finds the plan is correct.

• Some problems:

– negative goals;

– maintenance goals;

– conditionals & loops;

– exponential search space;

– logical consequence tests;

cis32-spring2009-parsons-lect15 19

The Frame Problem

• A general problem with representing properties of actions:

How do we know exactly what changes as the result of
performing an action?

If I pick up a block, does my hair colour stay the same?

• One solution is to write frame axioms.

Here is a frame axiom, which states that SP’s hair colour is the
same in all the situations s′ that result from performing Pickup(x)
in situation s as it is in s.

∀s, s′.Result(SP, Pickup(x), s) = s′ ⇒
HCol(SP, s) = HCol(SP, s′)

cis32-spring2009-parsons-lect15 20



• Stating frame axioms in this way is unfeasible for real problems.

• (Think of all the things that we would have to state in order to
cover all the possible frame axioms).

• STRIPS solves this problem by assuming that everything not
explicitly stated to have changed remains unchanged.

• The price we pay for this is that we lose the advantages of using
logic:

– Semantics goes out of the window

• However, more recent work has effectively solved the frame
problem (using clever second-order approaches).

cis32-spring2009-parsons-lect15 21

Sussman’s Anomaly

• Consider we have the following initial state and goal state:

B C

A

to

B

C

A

• What operations will be in the plan?

cis32-spring2009-parsons-lect15 22

• Clearly we need to Stack B on C at some point, and we also need
to Unstack A from C and Stack it on B.

• Which operation goes first?

• Obviously we need to do the UnStack first, and the Stack B on C,
but the planner has no way of knowing this.

• It also has no way of “undoing” a partial plan if it leads into a
dead end.

• So if it chooses to Stack(A, C) after the Unstack, it is sunk.

• This is a big problem with linear planners

• How could we modify our planning algorithm?

cis32-spring2009-parsons-lect15 23

• Modify the middle of the algorithm to be:

1. if d |= g then
2. return p
3. else
4. choose a in A such that
5. add(a) |= g and
6. del(a) 6|= g
6a. no clobber(add(a), del(a), rest of plan)
7. set g = pre(a)
8. append a to p
9. return plan(d, g, p, A)

• But how can we do this?

• We will give an answer in the next lecture.

cis32-spring2009-parsons-lect15 24



Summary

• This lecture has looked at planning.

• We looked mainly at a logical view of planning, using STRIPS
operators.

• We also discussed the frame problem, and Sussman’s anomaly.

• Sussman’s anomaly motivated some thoughts about
partial-order planning.

• We will cover partial order planning in more detail in the next
lecture.

cis32-spring2009-parsons-lect15 25


