LINEAR PLANNING

1 What is Planning?|

e Key problem facing agent is deciding what to do.

* We want agents to be taskable: give them goals to achieve, have
them decide for themselves how to achieve them.

® Basic idea is to give an agent:

- representation of goal to achieve;
- knowledge about what actions it can perform; and
— knowledge about state of the world;

and to have it generate a plan to achieve the goal.

e Essentially, this is

automatic programming.

cis32-spring2009-parsons-lect15 2

goal environment Possible actions

|

state of

|

Planner

cis32-spring2009-parsons-lect15

plan to achieve goal

¢ Question: How do we represent. ..

— goal to be achieved;

— state of environment;

— actions available to agent;
- plan itself.

® We show how all this can be done in first-order logic.

e This isn’t the only way to solve the problem, and later we’ll look
at other approaches.

cis32-spring2009-parsons-lect15 4

e We'll illustrate the techniques with reference to the blocks world.

e Contains a robot arm, 3 blocks (A, B and C) of equal size, and a
table-top.

e Initial state:

A
B C

e Though this is a toy problem, it is a good place to start thinking
about planning.

cis32-spring2009-parsons-lect15

¢ To represent this environment, need an ontology.

On(x,y) objxon top of objy
OnTable(x) obj xis on the table
Clear(x) nothing is on top of obj x
Holding(x) arm is holding x

® We will also have armEmpty which we will use as abbreviation
for:
—3x, Holding(x)
meaning that there is no object x that is being held by the arm.

cis32-spring2009-parsons-lect15

® Here is a first order logic (FOL) representation of the blocks
world described above:

Clear(A)
On(A, B)
OnTable(B)
OnTable(C)
Clear(C)

e Use the closed world assumption: anything not stated is assumed
to be false.

cis32-spring2009-parsons-lect15

e A goal is represented as a FOL formula.

® Here is a goal:

OnTable(A) A OnTable(B) A OnTable(C)

® Which corresponds to the state:

A B C

e Actions are represented using a technique that was developed in
the STRIPS planner.

cis32-spring2009-parsons-lect15

e FEach action has:

— a name
which may have arguments;
— a pre-condition list
list of facts which must be true for action to be executed;
— a delete list
list of facts that are no longer true after action is performed;
— an add list
list of facts made true by executing the action.

Each of these may contain variables.

cis32-spring2009-parsons-lect15

e Example 1:

The stack action occurs when the robot arm places the object X it
is holding is placed on top of object y.

Stack(x, y)
pre Clear(y) A Holding(x)
del Clear(y) A Holding(x)
add ArmEmpty A On(x,y)

cis32-spring2009-parsons-lect15 10

e Example 2:

The unstack action occurs when the robot arm picks an object x
up from on top of another object y.

UnSack(x, y)
pre On(x,y) A Clear(x) A ArmEmpty
del On(x,y) A ArmEmpty
add Holding(x) A Clear(y)

Stack and UnStack are inverses of one-another.

cis32-spring2009-parsons-lect15

e Example 3:
The pickup action occurs when the arm picks up an object x from
the table.
Pickup(x)
pre Clear(x) A OnTable(x) A ArmEmpty
del OnTable(x) A ArmEmpty
add Holding(x)

e Example 4:
The putdown action occurs when the arm places the object x onto
the table.
PutDown(x)
pre Holding(x)
del Holding(x)
add Holding(x) A ArmEmpty

cis32-spring2009-parsons-lect15 12

e What is a plan?
A sequence (list) of actions, with variables replaced by constants.

e So, to get from:

>
vy

to

cis32-spring2009-parsons-lect15 13

e We need the set of actions:

Naive Planner]

e In “real life”, plans contain conditionals (I F .. THEN. ..)and
loops (WHI LE. .. DQ. . .), but most simple planners cannot
handle such constructs — they construct linear plans.

e Simplest approach to planning: means-ends analysis.
e Involves backward chaining from goal to original state.

e Start by finding an action that has goal as post-condition.
Assume this is the last action in plan.

® Then figure out what the previous state would have been.
Try to find action that has this state as post-condition.

® Recurse until we end up (hopefully!) in original state.

cis32-spring2009-parsons-lect15 15

Unstack(A)
Putdown(A)
Pickup(B)
Sack(B, C)
Pickup(A)
Stack(A, B)
cis32-spring2009-parsons-lect15 14
function plan(
d : WorldDesc, /I initial env state
g: Goal, /I goal to be achieved
p: Plan, /l plan so far
A : set of actions /[actions available)
if d = g then
return p
else

choose ain A such that
add(a) =gand
del(a) g

set g = pre(a)

append ato p

return plan(d, g, p, A)

©CoNoUMWDNE

cis32-spring2009-parsons-lect15

® As we discussed in class, this doesn’t quite specify the operation
of the planner correctly.

® (Though it comes close I think).

e Line 5 tries to capture the idea that we pick a so that the result of
action a will achieve some part of the goal.

e Similarly, line 6 tries to capture the idea that the items in the
delete list of a are not part of the goal.

® Then line 7 tries to say that you add any preconditions of a that
aren’t already true to the set of things that still have to be
achieved in order to satisfy the goal.

cis32-spring2009-parsons-lect15 17

® How does this work on the previous example?

cis32-spring2009-parsons-lect15

18

e This algorithm not guaranteed to find the plan...
e ... but it is sound: If it finds the plan is correct.
® Some problems:

- negative goals;

— maintenance goals;

- conditionals & loops;

— exponential search space;

- logical consequence tests;

cis32-spring2009-parsons-lect15 19

'The Frame Problem|

e A general problem with representing properties of actions:

How do we know exactly what changes as the result of
performing an action?

If I pick up a block, does my hair colour stay the same?

¢ One solution is to write frame axioms.
Here is a frame axiom, which states that SP’s hair colour is the

same in all the situations s that result from performing Pickup(x)

in situation sas itisin s.

Vs, s.Result(SP, Pickup(x),s) = S =
HCol(SP, s) = HCol(SP, §)

cis32-spring2009-parsons-lect15

20

e Stating frame axioms in this way is unfeasible for real problems.

¢ (Think of all the things that we would have to state in order to
cover all the possible frame axioms).

® STRIPS solves this problem by assuming that everything not
explicitly stated to have changed remains unchanged.

® The price we pay for this is that we lose the advantages of using
logic:

- Semantics goes out of the window

® However, more recent work has effectively solved the frame
problem (using clever second-order approaches).

cis32-spring2009-parsons-lect15 21

‘Sussman’s Anomaly‘

¢ Consider we have the following initial state and goal state:

A

A B

to

e What operations will be in the plan?

cis32-spring2009-parsons-lect15

B C C

22

® Clearly we need to Stack B on C at some point, and we also need
to Unstack A from C and Sack it on B.

® Which operation goes first?

® Obviously we need to do the UnStack first, and the Stack B on C,
but the planner has no way of knowing this.

e It also has no way of “undoing” a partial plan if it leads into a
dead end.

e So if it chooses to Sack(A, C) after the Unstack, it is sunk.
e This is a big problem with linear planners

® How could we modify our planning algorithm?

cis32-spring2009-parsons-lect15 23

¢ Modify the middle of the algorithm to be:

1. ifdgEgthen

2 return p

3. else

4 choose ain A such that

5. add(a) = gand

6. del(a) g

6a. no_clobber (add(a), del(a), rest_of _plan)
7. set g = pre(a)

8. append ato p

9. return plan(d, g, p, A)

e But how can we do this?

* We will give an answer in the next lecture.

cis32-spring2009-parsons-lect15

24

Summary

e This lecture has looked at planning.

® We looked mainly at a logical view of planning, using STRIPS
operators.

® We also discussed the frame problem, and Sussman’s anomaly.

® Sussman’s anomaly motivated some thoughts about
partial-order planning.

® We will cover partial order planning in more detail in the next
lecture.

cis32-spring2009-parsons-lect15 25

