
PARTIAL-ORDER PLANNING

Partial Order Planning

• The answer to the problem we ended the last lecture with is to
use partial order planning.

• Basically this gives us a way of checking before adding an action
to the plan that it doesn’t mess up the rest of the plan.

• The problem is that in this recursive process, we don’t know
what the rest of the plan is.

• Need a new representation partially ordered plans.

cis32-spring2009-parsons-lect16 2

Representation

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Finish

Start

LeftShoeOn, RightShoeOn

cis32-spring2009-parsons-lect16 3

Partially ordered plans

• Partially ordered collection of steps with

– Start step has the initial state description as its effect

– Finish step has the goal description as its precondition

– causal links from outcome of one step to precondition of
another

– temporal ordering between pairs of steps

• Open condition = precondition of a step not yet causally linked

• A plan is complete iff every precondition is achieved

• A precondition is achieved iff it is the effect of an earlier step and
no possibly intervening step undoes it

cis32-spring2009-parsons-lect16 4

Plan construction

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

cis32-spring2009-parsons-lect16 5

Plan construction (2)

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

cis32-spring2009-parsons-lect16 6

Plan construction (3)

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

cis32-spring2009-parsons-lect16 7

Planning process

• Operators on partial plans:

– add a link from an existing action to an open condition

– add a step to fulfill an open condition

– order one step wrt another to remove possible conflicts

• Gradually move from incomplete/vague plans to complete,
correct plans

• Backtrack if an open condition is unachievable or if a conflict is
unresolvable

cis32-spring2009-parsons-lect16 8

POP algorithm

function POP(initial, goal, operators) returns plan

plan←MAKE-MINIMAL-PLAN(initial, goal)
loop do

if SOLUTION?(plan) then return plan
Sneed, c← SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators, Sneed, c)
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns Sneed, c

pick a plan step Sneed from STEPS(plan)
with a precondition c that has not been achieved

return Sneed, c

cis32-spring2009-parsons-lect16 9

procedure CHOOSE-OPERATOR(plan, operators, Sneed, c)

choose a step Sadd from operators or STEPS(plan) that has c as an effect
if there is no such step then fail

add the causal link Sadd
c
−→ Sneed to LINKS(plan)

add the ordering constraint Sadd ≺ Sneed to ORDERINGS(plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS(plan)
add Start ≺ Sadd ≺ Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si
c
−→ Sj in LINKS(plan) do

choose either
Demotion: Add Sthreat≺ Si to ORDERINGS(plan)
Promotion: Add Sj ≺ Sthreat to ORDERINGS(plan)

if not CONSISTENT(plan) then fail

end

cis32-spring2009-parsons-lect16 10

Clobbering

• A clobberer is a potentially intervening step that destroys the
condition achieved by a causal link. E.g., Go(Home) clobbers
At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

cis32-spring2009-parsons-lect16 11

Properties of POP

• Nondeterministic algorithm: backtracks at choice points on
failure:

– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer

– selection of Sneed is irrevocable

• POP is sound, complete, and systematic (no repetition)

• Extensions for disjunction, universals, negation, conditionals

• Can be made efficient with good heuristics derived from
problem description

• Particularly good for problems with many loosely related
subgoals

cis32-spring2009-parsons-lect16 12

Example

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

cis32-spring2009-parsons-lect16 13

Example (2)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

cis32-spring2009-parsons-lect16 14

Example (3)

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

cis32-spring2009-parsons-lect16 15

Example (4)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

cis32-spring2009-parsons-lect16 16

Example (5)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

cis32-spring2009-parsons-lect16 17

Summary

• This lecture has looked at a more advanced approach to
planning.

– Partial order planning

• This requires a new way of looking at the world, but the payoff
is a more robust approach.

•We also looked at the POP algorithm, . . .

• . . . and saw how it could solve the Sussman anomaly.

cis32-spring2009-parsons-lect16 18

