
PLANNING AS LEARNING

Overview

• The last few lectures have considered techniques for planning.

• We have considered that an agent knows all bout its
environment and plans by thinking hard about what it wants to
do.

• Instead we can think of planning as a process of exploring the
environment around the agent.

• We’ll look at a number of approaches based on this idea.

• These are all types of reinforcement learning.

• They are also ideas that link closely back to the things we talked
about when we talked about search.

cis32-spring2009-parsons-lect17 2

• We’ll start by considering that we have a state-space in which the
agent is carrying out actions.

• We want to come up with a plan.

• Well, in fact what we end up with is a policy.

• That is matrix that tells us which action to carry out in which
state.

• This is a conditional plan, which is much more robust than a linear
plan as produced by STRIPS.

• One way to get this is by applying a heuristic — the heuristic
value for each state helps to tell us which action we should pick.

cis32-spring2009-parsons-lect17 3

Learning heuristics

• We will start by assuming that the agent knows the results and
costs of each operation.

• We will also assume that it can build the whole search tree.

• This is just what we did for previous searches.

• We then set h(n) = 0 for all n and run an A* search.

• When the agent has expanded node ni to give a set of children
δ(ni), it updates its h(ni) to be:

h(ni) := min
nj∈δ(ni)

[h(nj) + c(ni, nj)]

where c(ni, nj) is the cost of moving from ni to nj.

• We further assume that the agent can recognise the goal state
and knows that h(goal) is 0.

cis32-spring2009-parsons-lect17 4



• This won’t do much for the agent the first time–it is just uniform
cost search.

• However, subsequent searches will ”zoom in” on the right
solution faster and faster.

• This happens as the hT(n) values propagate back from the goal.

• (There are few enough values that these can be stored in a table.)

• Each run propagates the true cost of getting to the goal further
back through the search.

• Eventually, the minimal cost path can just be read off the tree.

cis32-spring2009-parsons-lect17 5

Learning without a model of action

• As described this kind of search is a ”thought experiment” that
an agent carries out.

• In the case of the navigating robot, it is planning its route across
the grid.

• Alternatively it would be possible for the agent to actually carry
out the operations to see what happens.

• In the case of the robot it could move through the room
randomly at first, working out over a number of runs what the
outcomes of actions were, and which were most useful at which
point.

• (To do this, the agent will have to build a model of the state
space in its ”head”).

cis32-spring2009-parsons-lect17 6

Boundary

Solid
object

The robot senses whether
the eight surrounding cells
are free for it to occupy

A robot starting here will
go clockwise around the
inside of the outer boundary

A robot starting here will go
counterclockwise around the
outside boundary of the object

s1 s2 s3

s8 s4

s7 s6 s5

© 1998 Morgan Kaufmann Publishers

cis32-spring2009-parsons-lect17 7

• What we assume is that:

– The agent can distinguish the states it visits (and name them).

– The agent knows how much actions cost once it has taken
them.

• The process starts at the start state s0.

• The agent then takes an action (maybe at random), and moves to
another state. And repeats.

• As it visits each state, it names it and updates the heuristic value
of this state as:

h(ni) := [h(nj) + c(ni, nj)]

where ni is the node in which an action is taken, nj is the node the
action takes the agent to, and c(ni, nj) is the cost of the action.

• h(nj) is zero if the node hasn’t been reached before.

cis32-spring2009-parsons-lect17 8



• Whenever the agent has to choose an action a, it chooses it by:

a = argmina [h(σ(ni, a)) + c(ni, σ(ni, a))]

where σ(ni, a) is the state reached from ni after carrying out a.

• As before, the estimated minimum cost path to the goal is built
up over repeated runs.

• However, allowing some randomness in the choice of actions
increases the chance that the “estimated minimum cost path”
really is the best path.

cis32-spring2009-parsons-lect17 9

Learning without a search graph

• For many interesting problems, it is not possible to store all the
states/nodes and build the entire search graph.

• Provided we have a model of the effects of actions, we can still
search with an evaluation function.

• We start by assembling a heuristic as a linear combination of
some set of plausible functions.

• For the 8-puzzle these might be:

– W(n) : number of tiles out of place.

– P(n) : sum of distance each tile is from home.

• Plus any additional functions you can think of.

cis32-spring2009-parsons-lect17 10

• Potentially you could consider all the things it is possible to
measure.

• Then:
h(n) = w1W(n) + w2P(n) + . . .

• We then learn which weights are best.

• One way to do this is as follows:

• After expanding ni to δ(ni) we adjust the weights so that:

h(ni) := h(ni) + β








min

nj∈δ(ni)
[h(nj) + c(ni, nj)] − h(ni)









• We modify h(ni) by adding some proportion of (controlled by β)
of the difference between what we thought h(ni) was before the
expansion, and what we think it is after.

cis32-spring2009-parsons-lect17 11

• We can rewrite this as:

h(ni) := (1 − β)h(ni) + β min
nj∈δ(ni)

[h(nj) + c(ni, nj)]

• β controls how fast the agent learns—how much weight we give
to the new estimate of the heuristic.

• If β = 0 there is no adjustment.

• If β = 1, h(ni) is thrown away immediately.

• Low values of β lead to slow learning, and high values mean
that performance is erratic.

• Note that this temporal difference approach can also work without a
model of the effects of actions

– Need modifications which we won’t deal with here.

cis32-spring2009-parsons-lect17 12



Rewards not goals

• For many tasks agents don’t have short term goals, but instead
accrue rewards over a period of time.

• For such a case we definitely want a policy π which says what
action should be carried out in a given state.

• We express the reward an agent gets as r(ni, a), and if doing a in
ni takes the agent to nj, then:

r(ni, a) = −c(ni, nj) + ρ(nj)

where ρ(nj) is a reward for being in state nj.

• We want an optimal policy π∗ which maximises the reward at
every node.

• (Rewards are typically discounted over time.)

cis32-spring2009-parsons-lect17 13

• One way to find the optimum policy is by searching through all
possible policies.

• Start with a random policy and calculate its reward.

• Then guess another policy and see if it has a better reward (kind
of slow).

• Better would be to tweak the policy by swapping some a in ni for
an a′ with a higher r(ni, a′).

• A good heuristic for tweaking actions may help us find the best
policy.

• But there are better approaches.

cis32-spring2009-parsons-lect17 14

• Given a policy π, we can compute the value of each node—the
reward the agent will get if it starts at that node and follows the
policy.

• If the agent is at ni and follows π to nj then the agent will get
reward:

Vπ(ni) = r(ni, π(ni)) + γVπ(nj)

where γ is the discount factor.

– Think of this as the opposite of bank interest.

• The optimum policy then gives us the action that maximises this
reward:

Vπ∗(ni) = max
a

[

r(ni, a) + γVπ∗(nj)
]

cis32-spring2009-parsons-lect17 15

• If we knew what the values of the nodes were under π∗, then we
could easily compute the optimal policy:

π∗(ni) = argmaxa

[

r(ni, a) + γVπ∗(nj)
]

• The problem is that we don’t know these values.

• But we can find them out using value iteration.

• We start by guessing (randomly is fine) an estimated value V(n)
for each node.

cis32-spring2009-parsons-lect17 16



• Then when we are at ni we pick the action to maximise:

argmaxa [r(ni, a) + γV(nj)]

that is the best thing given what we currently know.

• We then update V(ni) by:

V(ni) := (1 − β)V(ni) + β [r(ni, a), γV(nj)]

• Progressive iterations of this calculation make V(n) a closer and
closer approximation to Vπ∗(ni).

• Intuitively this is because we replace the estimate with the actual
reward we get for the next state (and the next state and the next
state).

cis32-spring2009-parsons-lect17 17

Summary

• This lecture has looked at a number of approaches to learning
plans.

• We started by thinking about an agent exploring a search space
and trying to learn a heuristic.

– Since a good heuristic tells us which action to take, it is kind
of like a plan generator.

• We started with a simple learning problem and progressively
considered more complex scenarios.

• This created a battery of reinforcement learning methods that
can be applied in a wide variety of situations.

cis32-spring2009-parsons-lect17 18


