
DECISION-THEORETIC PLANNING



• All the techniques for planning that we have looked at assume
deterministic actions.

• This is a BIG assumption.

• (It is certainly not true in general).

• However, it is simple enough in concept to deal with.

• We will cover two closely related approaches to handling
non-deterministic actions:

– Markov decision processes.

– Partially observable Markov decision processes.

• Both are close in many ways to the kind of planning we looked
at in the last class.

• The big change is that actions can have more than one outcome.

cis32-spring2009-parsons-lect18 2



Planning as search

• Let’s start by thinking about deterministic actions.

• We can describe a state space search model as:

– a state space S;

– an initial state s0;

– a set of actions, A(s) ⊆ A, applicable in each state s ∈ S;

– transition function f (s, a) for s ∈ S and a ∈ A;

– action costs c(a, s) > 0; and

– a set of goal states G ⊆ S

cis32-spring2009-parsons-lect18 3



• This gives us a problem space that looks like:

• A solution is a path through this space from initial state to a goal
state.

cis32-spring2009-parsons-lect18 4



• There are lots of ways of searching this space.

• One simple way is greedy search:

1. Evaluate each action a which can be performed in the
current state:

Q(a, s) = c(a, s) + h(sa)

where sa is the next state.

2. Apply action a that minimises Q(a, s);

3. If sa is the goal, exit
else s := sa, goto 1.

• This just picks the cheapest move at each point.

cis32-spring2009-parsons-lect18 5



• This is a simple approach that uses little (and constant) memory.

• It can be easily adapted to give a version that we evaluate in real
time.

– Instead of sa being the state we expect to get, make it the one
we observe.

• Like any depth first approach, it isn’t optimal.

• It might not even find solutions.

• (But from the last class we know how to use learning to ensure
that it gets better over time).

cis32-spring2009-parsons-lect18 6



Markov decision processes

• So far, there is nothing really new here.

• But it is only a small step to a much better representation.

• In a non-deterministic environment, we don’t have a simple
transition function.

• Instead an action can lead to one of a number of states.

• When we can tell which state we are in, then we have a Markov
decision process (MDP)

cis32-spring2009-parsons-lect18 7



• An MDP has the following formal model:

– a state space S;

– a set of actions, A(s) ⊆ A, applicable in each state s ∈ S;

– transition probabilities Pra(s′|s) for s, s′ ∈ S and a ∈ A;

– action costs c(a, s) > 0; and

– a set of goal states G ⊆ S

• Thus for each state we have a set of actions we can apply, and
these take us to other states with some probability.

• We don’t know which state we will end up in, but we know
which one we are in after the action (we have full observability).

cis32-spring2009-parsons-lect18 8



• This gives us a problem space that looks like:

• A solution is now choice of action in every possible state that the
agent might end up in.

cis32-spring2009-parsons-lect18 9



• We can think of this solution as a function π which maps states
into applicable actions, π(si) = ai.

• This function is called a policy.

• What a policy allows us to compute is a probability distribution
across all the trajectories from a given initial state.

• This is the product of all the transition probabilities, Prai(si+1|si),
along the trajectory.

• Goal states are taken to have no cost, no effects, so that if s ∈ G:

– c(a, s) = 0

– Pr(s|s) = 1

cis32-spring2009-parsons-lect18 10



• We can then calculate the expected cost of a policy starting in
state s0.

• This is just the probability of the policy multiplied by the cost of
traversing it:

∞∑

i=0
c(π(si), si)

• An optimal policy is then a π
∗ that has minimum expected cost

for all states s.

• As with the search version of the problem, we can solve this by
searching, albeit through a much larger space.

• Later we will look at ways to do this search.

cis32-spring2009-parsons-lect18 11



Partially observable MDPs

• Full observability is a big assumption (it requires an accessible
environment). Much more likely is partial observability.

• This means that we don’t know what state we are in, but instead
we have some set of beliefs about which state we are in.

• We represent these beliefs by a probability distribution over the
set of possible states.

• These probabilities are obtained by making observations.

• The effect of observations are modelled as probabilities Pra(o|s),
where o are observations.

cis32-spring2009-parsons-lect18 12



• Formally a POMDP is:

– a state space S;

– a set of actions, A(s) ⊆ A, applicable in each state s ∈ S;

– transition probabilities Pra(s′|s) for s, s′ ∈ S and a ∈ A;

– action costs c(a, s) > 0;

– a set of goal states, G;

– an initial belief state b0;

– a set of final belief states bF;

– observations o after action a with probabilities Pra(o|s)

cis32-spring2009-parsons-lect18 13



• So we have a situation which looks like:

• This is just an MDP over belief states.

cis32-spring2009-parsons-lect18 14



• The goal states of an MDP are just replaced by, for example,
states in which we are pretty sure we have reached a goal:

∑

s∈G
b(s) > 1 − ǫ

• We solve a POMDP by looking for a function which maps belief
states into actions, where belief states b are probability
distributions over the set of states S.

• Given a belief state b, the effect of carrying out action a is:

ba(s) =
∑

s′∈S
Pr
a

(s|s′)b(s′)

cis32-spring2009-parsons-lect18 15



• If we carry out a in b and then observe o, we get to state bo
a:

bo
a(s) =

Pra(o|s)ba(s)
∑

s′∈S Pra(o|s′)ba(s′)

• The term on the bottom is the probability of observing o after
doing a in b.

• Thus actions map between belief states with probability:

ba(o) =
∑

s′∈S
Pr
a

(o|s′)ba(s
′)

and we want to find a trajectory from b0 to bF at minimum cost.

cis32-spring2009-parsons-lect18 16



Dynamic programming

• Again we could use greedy search (or any other search
technique) to solve POMDPs.

• However, there are more efficient techniques from dynamic
programming for both MDPs and POMDPs.

• We start from Bellman’s principle of optimality:

If a is the best action in s to reach the goal, and sa is the
resulting state, then the optimal cost from s is the optimal
cost from s plus the cost of doing a

V∗(s) = min
a∈A(s)

[c(a, s) + V∗(sa)]

• This gives us a recursive definition of the optimal cost.

cis32-spring2009-parsons-lect18 17



• This can easily be extended to handle MDPs:

V∗(s) = min
a∈A(s)

[c(a, s) +
∑

s′∈S
Pr
a

(s′|s)V∗(s′)]

replacing the cost of the path from sa with the expected cost
across all states that might result from a.

• This search depends upon the heuristic estimate for the expect
cost.

• The optimal cost is just V∗(s), so the greedy policy:

π
∗(s) = arg−mina∈A(s)[c(a, s) +

∑

s′∈S
Pra (s′|s)V∗(s′)]

is the optimal policy.

cis32-spring2009-parsons-lect18 18



• The problem then is to find V∗(·).

• We do this by value iteration, solving the recursive equation:

V∗(s) = min
a∈A(s)

[c(a, s) +
∑

s′∈S
Pr
a

(s′|s)V∗(s′)]

for V∗(·) iteratively.

• So:

– V0(s) = 0;

– Vi+1(s) = mina∈A(s)[c(a, s) + ∑
s′∈S Pra(s′|s)Vi(s′)]

cis32-spring2009-parsons-lect18 19



• Value iteration converges on V∗(·).

• In other words:
lim
i→∞

Vi(s) = V∗(s)

• So, if we run the algorithm for long enough, it will give us the
optimal value function, and from this we can recover the optimal
policy.

• Value iteration can solve MDPs with up to 107 states.

• This is enough for many purposes.

cis32-spring2009-parsons-lect18 20



• We can combine greedy search with value iteration.

• The algorithm is:

1. Evaluate each action a applicable in current state s as:

Q(s, a) = c(s, a) +
∑

s′∈S
Pr
a

(s′|s)Vi(s
′)

2. Apply a that minimises Q(s, a)

3. Update V(s) to Q(s, a).

4. Observe resulting state s′

5. Exit if s′ is goal, else with s := s′ go to 1.

cis32-spring2009-parsons-lect18 21



• This process is known as real-time dynamic programming.

• V(s) is initialized to h(s)

• If h is admissible, and after repeated trials, this greedy policy
eventually becomes optimal.

• This is just like the reinforcement learningwe saw before for
learning a heuristic, but adapted for a more realistic
environment.

• If h is good, very large problems can be solved this way.

cis32-spring2009-parsons-lect18 22



• The same approach can be adopted for POMDPs.

• As we already mentioned, a POMDP is an MDP over belief
states:

– An action a transforms a belief state b into ba

– An action a and an observation o map b into bo
a with

probability ba(o).

• This makes it easy to come up with a RTDP algorithm.

cis32-spring2009-parsons-lect18 23



• We have:

1. Evaluate each action a applicable in current state b as:

Q(b, a) = c(b, a) +
∑

o∈O
ba(o)V(bo

a)

2. Apply a that minimises Q(b, a)

3. Update V(b) to Q(b, a).

4. Observe o

5. Compute new belief state bo
a

6. Exit if bo
a is final belief state, else with b := bo

a go to 1.

• POMDPs are much less tractable than MDPs — the state space is
way larger.

• Currently POMDPs with ∼ 1000 states are unsolvable (lots of
work on factoring state spaces.

cis32-spring2009-parsons-lect18 24



Summary

• In this lecture, we have looked at a more sophisticated model of
planning than STRIPS.

• Starting from the notion of planning as search, we introduced
the Markov decision process representation.

• A solution to an MDP is a policy, a choice of what action to take
in every state.

• We looked at the use of dynamic programming to solve MDPs.

cis32-spring2009-parsons-lect18 25


