
KINEMATICS II



What went before

• Last time we looked at two parts of the mathematics of robot
motion.

• Overall motion, making simplifying assumptions

– Robot as a body moving in a plane.
– Forward and reverse kinematic models.

• Motion of individual wheels.

– Equations relating to wheel spin and slideways motion.
– Fixed and steerable standard wheels have constraints.
– Swedish and spherical wheels, as well as castors, do not have

constraints.
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Today

• Take individual constraints on wheels, and use these to establish
constraints on the robot as a whole.

• Gives us a more accurate kinematic picture of the whole robot.

– Robot as a constrained body moving in a plane.

• Tells us how the design of the robot constrains its ability to move.
• Gives us precise notions of:

– Mobility
– Steerability
– Maneuverability
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Kinematic constraints
• How does the design of a robot with M wheels constrain how the

robot moves?

– How does a differential drive robot move compared with a
bicycle?

• Five categories of wheel:

– Fixed standard
– Steerable standard
– Castors
– Swedish
– Spherical

• Only fixed and steerable standard wheels have any constraints.
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• A fixed standard wheel, radius r, polar coordinates l and α to
some reference point on the chassis, wheel at β to chassis, chassis
moving at ξ̇I has a rolling constraint:

[sin(α + β) − cos(α + β)(−l) cos β] R(θ)ξ̇I − rϕ̇ = 0

where ϕ̇ is the rate of rotation of the wheel about its axle and:
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translates from the global frame of reference to the local frame.
• This says that the wheel does not slip at its point of contact with

the ground.
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• Similarly, we have a sliding constraint:

[cos(α + β) sin(α + β)l sin β] R(θ)ξ̇I = 0

• This says that the wheel does not move perpendicular to its
plane of rotation.

• We can write identical expressions for a steerable standard
wheel.
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From constraints on wheels to constraints on robots

• Consider we have a robot with N wheels.

– Nf are fixed standard wheels
– Ns are steerable standard wheels

• Deal with this by considering fixed wheels all together, and
steerable wheels all together.

• βs(t) is a vector that describes the steering angles of all Ns

steerable wheels.

• βf is a vector that describes the orientation of all Nf fixed wheels.
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• ϕf (t) is a vector that describes the rotation of the fixed wheels.
• ϕs(t) is a vector that describes the rotation of the steerable wheels.

• ϕ(t) collects these together:

ϕ(t) =
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• We can now write the rolling constraints of all the wheels in a
way analogous to the constraint for one wheel:

J1(βs)R(θ)ξ̇I − J2ϕ̇ = 0
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where J2 gives wheel radii, and J1 relates wheels to the motion
along their planes:

J2 =
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J1(βs) =
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• J1f and J1s(βs) are relate wheels to motion for fixed and steerable
wheels respectively.
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• We can do the same thing for sliding constraints, giving:

C1(βs)R(θ)ξ̇I = 0

where
C1(βs) =
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• These two expressions then summarize all the constraints on the
root due to its wheels.

• The sliding constraint (the second one) has the biggest impact on
what a robot can do.
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Maneuverability of a mobile robot

• The mobility of a chassis is its ability to directly move in the
environment.

• An unconstrained robot can move in any direction at any time,
and therefore follow any path through the environment.

• There are two parts to mobility:

– Instantaneous motion
– Steering

which is (roughly speaking) the difference between omni-drive
and a car chassis.

• The overall maneuverability of a chassis is a combination of
freedom from sliding constraints and steerability.
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• Sliding constraints require that:

C1f R(θ)ξ̇I = 0

and
C1s(βs)R(θ)ξ̇I = 0

• These put contraints on R(θ)ξ̇I, and thus on the motion that the
robot can perform.

• One view:

R(θ)ξ̇I must belong to the null space of C1(βs)

meaning that motion is in some space N such that for any n ∈ N

C1(βs)n = 0

• Another view: instantaneous center of rotation.
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Instantaneous center of rotation
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Back to maneuverability

• The range of possible motion is determined by the set of
independent constraints.

• Related to the rank of C1(βs).
• More constraints = greater rank of C1(βs)

• More constraints = less flexibility in mobility of the robot.
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• A robot with one fixed standard wheel.

– One constraint.
– C1(βs) has rank one.

• A robot with two fixed standard wheels in differential drive:

– Two constraints, but not independent:
– C1(βs) has rank one.

• A robot with two fixed standard wheels in bicycle drive:

– Two constraints.
– C1(βs) has rank two
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• Range of possible values for rank [C1(βs)]:

0 ≤ C1(βs) ≤ 3

• C1(βs) = 0. No constraints, and no standard wheels.
• C1(βs) = 3. Fully constrained since only three dimensions to

constrain.

• C1(βs) = 3. No motion possible.
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Degree of mobility

• The null space N of C1(βs) defines how the robot can move just
by changing wheel velocity.

• The dimensionality of N measures the degrees of freedom under
the robot’s control just by altering velocity.

• Define degree of mobility δm:

δm = dim N [C1(βs)]

= 3 − rank [C1(βs)]
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• Differential drive robot:

– δm = 2

– Robot can change both orientation and position on its current
path just by changing wheel speed.

• Bicycle drive robot:

– δm = 1

– Robot can only change position on its current path by
changing wheel speed.

– Needs steerable wheel to change orientation.
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Degree of steerability

• Degree of mobility captures what can be done just with changes
in wheel velocity.

• What about steerable wheels?
• They don’t have an instantaneous effect, but they do have an

effect over time.
• Degree of steerability δs

δs = rank [C1s(βs)]

C1s(βs) is the “steerable” bit of C1(βs).
• The bigger the rank of C1s(βs), the more steerable the robot.
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• 0 ≤ δs ≤ 2

• δs = 0 implies no steerable wheels.
• δs = 1 implies one independent steerable wheel.

– As in a car where two steerable wheels share one axle
• δs = 2 only possible if no standard wheels

– “Two-steer”
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Degree of manueverability

• The degree of maneuverability depends on both mobility and
steerability:

δM = δm + δs

• Maneuverability includes both the degrees of freedom that can
be manipulated instantaneously through changes in wheel
velocity, and those that can be manipulated through steering.

• As a result, robots with the same δM are notnecessarily
equivalent.

• We can see that by looking at different wheel configurations.
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On to workspace

• What is important is how the robot can move in its environment.

• Degrees of freedom (DOF)

– Feature of the workspace

• Differentiable degrees of freedom

– Feature of the robot
– Number of independently achievable velocities
– Equal to degree of mobility δm.
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Summary

• These notes have discussed robot kinematics.
• In particular, they have considered how we can develop

constraints on a whole robot from constraints on a set of wheels.
• Furthermore, they have discussed how this set of constraints on

a robot can be used to develop notions of mobility, steerability,
and maneuverability.
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