

12/2/2005

esentation
ric $\rightarrow x, y, \theta$
\rightarrow metric grid
gical \rightarrow topological grid
eling
n, e.g. laser range data, grayscale images
of data, low distinctiveness on the level of individual values
ll acquired information
es, e.g. line other geometric features
ne of data, average distinctiveness
useful information, still ambiguities
res, e.g. doors, a car, the Eiffel tower
f data, high distinctiveness
ti ? ? ? a a r m u

Autonomous I	Mobile	Robots.	Chapter 5
		,	

Interlude 1 ...

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization: Case Study 1 - Topological Map (1)

- The Dervish Robot
- Topological Localization with Sonar

Aarkov Localiz	ation · C					
		ase Stud	y 1 - Top	pological	l Map (2)	
Topological map of	of office-ty	pe enviror	nment			
RI HI H1-2 F	R2 H2 H2-3	НЗ	O-	R1 	H_2	-C
	Wall	Closed door	Open door	Open hallway	Foyer	
Nothing detected	0.70	0.40	0.05	0.001	0.30	
Closed door detected	0.30	0.60	0	0	0.05	
Open door detected	0	0	0.90	0.10	0.15	
open door detected						

5.6.2

Markov Localization: Case Study 1 - Topological Map (3)

• Update of belief state for position *n* given the percept-pair *i*

p(n|i) = p(i|n)p(n)

> p(n|i): new likelihood for being in position n

p(n): current belief state

	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

p(i|*n): probability of seeing* i *in* n *(see table)*No action update !

However, the robot is moving and therefore we can apply a combination of action and perception update

$$p(n_t|i_t) = \int p(n_t|n'_{t-i}, i_t) p(n'_{t-i}) dn'_{t-i}$$

t-i is used instead of t-1 because the topological distance between n' and n can very depending on the specific topological map

Markov Localization: Case Study 2 - Grid Map (10)

- Fine *fixed decomposition* grids result in a huge state space
 - Very important processing power needed
 - *Large memory requirement*
- Reducing complexity
 - > Various approached have been proposed for reducing complexity
 - The main goal is to reduce the number of states that are updated in each step
- Randomized Sampling / Particle Filter
 - Approximated belief state by representing only a 'representative' subset of all states (possible locations)
 - E.g update only 10% of all possible locations
 - ➤ The sampling process is typically weighted, e.g. put more samples around the local peaks in the probability density function
 - However, you have to ensure some less likely locations are still tracked, otherwise the robot might get lost

onomous Mobile Robots, Chapter 5	5.
Map Representation	
• <i>M</i> is a set <i>n</i> of probabilistic feat	ure locations
• Each feature is represented by t associated credibility factor c_t	he covariance matrix Σ_t and an
$M = \{\hat{z}_{t}, \Sigma_{t},$	$c_t (1 \le t \le n) \}$
• c_t is between 0 and 1 and quantificature in the environment $c_t(k) = 1 - c_t(k)$	ifies the belief in the existence of the $e^{-\left(\frac{n_s}{a} - \frac{n_u}{b}\right)}$
• a and b define the learning and number of matched and unobserves respectively.	forgetting rate and n_s and n_u are the rved predictions up to time k ,

Autonomous Mobile Robots, Chapter 5

Summary

- This lecture has explored issues relating to *localization*
 - > Odometry and the errors therein
 - > Sensor noise
 - > Map representation
 - > *Representation of robots within maps*
- We also looked at two (related) probabilistic approaches to performing localization.
 - > Markov localization
 - > Monte-Carlo localization
- These are both Bayes filters, and between them offer a promising solution to the localization problem.