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Localization and Map Building

• Noise and aliasing; odometric position estimation
• To localize or not to localize
• Belief representation
• Map representation
• Probabilistic map-based localization
• Other examples of localization system (maybe)
• Autonomous map building (maybe)
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Localization, Where am I?

?

• Odometry, Dead Reckoning
• Localization base on external sensors, 

beacons or landmarks
• Probabilistic Map Based Localization
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Challenges of Localization

• Knowing the absolute position (e.g. GPS) is not sufficient

• Localization in human-scale in relation with environment

• Planning in the Cognition step requires more than only position as 
input

• Perception and motion plays an important role
Sensor noise
Sensor aliasing
Effector noise
Odometric position estimation

5.2
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Sensor Noise

• Sensor noise in mainly influenced by environment 
e.g. surface, illumination …

• or by the measurement principle itself
e.g. interference between ultrasonic sensors

• Sensor noise drastically reduces the useful information of sensor 
readings. The solution is:

to take multiple readings into account
employ temporal and/or multi-sensor fusion 

5.2.1
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Sensor Aliasing

• In robots, non-uniqueness of sensors readings is the norm
Note that this is the case even if the sensors are working perfectly (which 
of course they typically don’t).

• Even with multiple sensors, there is a many-to-one mapping from 
environmental states to robot’s perceptual inputs

• Therefore the amount of information perceived by the sensors is 
generally insufficient to identify the robot’s position from a single 
reading

Robot’s localization is usually based on a series of readings
Sufficient information is recovered by the robot over time

5.2.2
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Effector Noise: Odometry, Dead Reckoning

• Odometry and dead reckoning: 
Position update is based on proprioceptive sensors

Odometry: wheel sensors only
Dead reckoning: also heading sensors

• The movement of the robot, sensed with wheel encoders and/or 
heading sensors is integrated to the position.

Pros: Straight forward, easy
Cons: Errors are integrated -> unbound

• Using additional heading sensors (e.g. gyroscope) might help to reduce 
the cumulated errors, but the main problems remain the same.

5.2.3
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Odometry: Error sources

deterministic non-deterministic 
(systematic) (non-systematic) 

deterministic errors can be eliminated by proper calibration of the system. 
non-deterministic errors have to be described by error models and will always 
leading to uncertain position estimate.

• Major Error Sources:
Limited resolution during integration (time increments, measurement resolution 
…)
Misalignment of the wheels (deterministic)
Unequal wheel diameter (deterministic)
Variation in the contact point of the wheel
Unequal floor contact (slipping, not planar …)
…

5.2.3

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Odometry: Classification of Integration Errors 

• Range error: integrated path length (distance) of the robots movement
sum of the wheel movements

• Turn error: similar to range error, but for turns
difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error in the 
robots angular orientation

Over long periods of time, turn and drift errors 
far outweigh range errors!

Consider moving forward on a straight line along the x axis. The error 
in the y-position introduced by a move of d meters will have a component 
of dsin∆θ, which can be quite large as the angular error ∆θ grows.

5.2.3
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Odometry: Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!

5.2.4
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Odometry: Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse in does not remain perpendicular to the direction of movement!

5.2.4
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Odometry: Calibration of Errors I (Borenstein [5])

• The unidirectional square path experiment

• BILD 1 Borenstein

5.2.4
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Odometry: Calibration of Errors II (Borenstein [5])

• The bi-directional square path experiment

• BILD 2/3 Borenstein

5.2.4
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Odometry: Calibration of Errors III (Borenstein [5])

• The deterministic and 
non-deterministic errors

5.2.4
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To localize or not?

• How to navigate between A and B
navigation without hitting obstacles
detection of goal location

• Possible by following always the left wall
However, how to detect that the goal is reached

5.3



12/2/2005 8

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Belief Representation

• a) Continuous map
with single hypothesis

• b) Continuous map
with multiple hypothesis

• d) Discretized map
with probability distribution

• d) Discretized topological
map with probability
distribution

5.4
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Belief Representation: Characteristics

• Continuous
Precision bound by sensor 
data
Typically single hypothesis 
pose estimate
Lost when diverging (for 
single hypothesis)
Compact representation and 
typically reasonable in 
processing power.

• Discrete
Precision bound by 
resolution of discretisation
Typically multiple hypothesis 
pose estimate
Never lost (when diverges, 
converges to another cell)
Important memory and 
processing power needed. 
(not the case for topological 
maps)

5.4
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Single-hypothesis Belief – Grid and Topological Map

5.4.1

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Grid-base Representation - Multi Hypothesis

• Grid size around 20 cm2. 

5.4.2

Courtesy of W.  Burgard
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Map Representation

1. Map precision vs. application

2. Features precision vs. map precision

3. Precision vs. computational complexity

• Continuous Representation

• Decomposition (Discretization)

5.5
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Representation of the Environment

• Environment Representation
Continuous Metric → x,y,θ
Discrete Metric → metric grid
Discrete Topological → topological grid

• Environment Modeling
Raw sensor data, e.g. laser range data, grayscale images

o large volume of data, low distinctiveness on the level of individual values
o makes use of all acquired information

Low level features, e.g. line other geometric features
o medium volume of data, average distinctiveness
o filters out the useful information, still ambiguities

High level features, e.g. doors, a car, the Eiffel tower
o low volume of data, high distinctiveness
o filters out the useful information, few/no ambiguities, not enough information

5.5
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Map Representation: Continuous Line-Based

a) Architecture map
b) Representation with set of infinite lines

5.5.1
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Map Representation: Decomposition (1)

• Exact cell decomposition

5.5.2
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Map Representation: Decomposition (2)

• Fixed cell decomposition
Narrow passages disappear

5.5.2
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Map Representation: Decomposition (3)

• Adaptive cell decomposition

5.5.2
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Map Representation: Decomposition (4)

• Fixed cell decomposition – Example with very small cells

5.5.2

Courtesy of S. Thrun
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Probabilistic, Map-Based Localization (1)

• Consider a mobile robot moving in a known environment.

• As it start to move, say from a precisely known location, it might keep 
track of its location using odometry. 

• However, after a certain movement the robot will get very uncertain 
about its position. 

update using an observation of its environment. 

• observation lead also to an estimate of the robots position which can 
than be fused with the odometric estimation to get the best possible 
update of the robots actual position. 

5.6.1
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• Improving belief state
by moving

5.6.1
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Bayesian Approach: A taxonomy of probabilistic models
More general

More specific

discrete
HMMs

continuous
HMMs

Markov Loc

semi-cont.
HMMs

Bayesian
Filters

Bayesian
Programs

Bayesian
Networks

DBNs

Kalman
Filters

MCML POMDPs

MDPs

Particle
Filters

Markov
Chains

St St-1

St St-1 Ot

St St-1 At

St St-1 Ot At

Courtesy of Julien Diard

S: State
O: Observation
A: Action

5.4
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Interlude 1 …
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Markov Localization

• Markov localization uses an 
explicit, discrete representation for the probability of 
every position in the state space. 

• This is usually done by representing the environment by a grid or a 
topological graph with a finite number of possible states (positions). 

• During each update, the probability for each state (element) of the 
entire space is updated.

5.6.2



12/2/2005 16

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Markov Localization: Case Study 1 - Topological Map (1)

• The Dervish Robot
• Topological Localization with Sonar

5.6.2
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Markov Localization: Case Study 1 - Topological Map (2)

• Topological map of office-type environment

5.6.2
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Markov Localization: Case Study 1 - Topological Map (3)

• Update of belief state for position n given the percept-pair i

p(n¦i): new likelihood for being in position n
p(n): current belief state
p(i¦n): probability of seeing i in n (see table)

• No action update !
However, the robot is moving and therefore we can apply a combination 
of action and perception update 

t-i is used instead of t-1 because the topological distance between n’ and 
n can very depending on the specific topological map

5.6.2
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Markov Localization: Case Study 2 – Grid Map (1)

• Fine fixed decomposition grid (x, y, θ), 15 cm x 15 cm x 1°
Action and perception update

• Action update:
Sum over previous possible positions
and motion model

Discrete version of eq. 5.22
• Perception update:

Given perception i, what is the
probability to be a location l

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (2)

• The critical challenge is the calculation of p(i¦l)
The number of possible sensor readings and geometric contexts is extremely large
p(i¦l) is computed using a model of the robot’s sensor behavior, its position l, and 
the local environment metric map around l. 
Assumptions

o Measurement error can be described by a distribution with a mean
o Non-zero chance for any measurement

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (3)

• The 1D case
1. Start

No knowledge at start, thus we have 
an uniform probability distribution.

2. Robot perceives first pillar
Seeing only one pillar, the probability
being at pillar 1, 2 or 3 is equal.

3. Robot moves
Action model enables to estimate the 
new probability distribution based 
on the previous one and the motion.

4. Robot perceives second pillar
Base on all prior knowledge the 
probability being at pillar 2 becomes
dominant

5.6.2
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Markov Localization: Case Study 2 – Grid Map (4)

• Example 1: Office Building

5.6.2

Position 3
Position 4

Position 5

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (5)

• Example 2: Museum
Laser scan 1

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (6)

• Example 2: Museum
Laser scan 2

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (7)

• Example 2: Museum
Laser scan 3

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (8)

• Example 2: Museum
Laser scan 13

5.6.2

Courtesy of 
W. Burgard

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Markov Localization: Case Study 2 – Grid Map (9)

• Example 2: Museum
Laser scan 21

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (10)

• Fine fixed decomposition grids result in a huge state space
Very important processing power needed
Large memory requirement

• Reducing complexity
Various approached have been proposed for reducing complexity
The main goal is to reduce the number of states that are updated in each 
step

• Randomized Sampling / Particle Filter
Approximated belief state by representing only a ‘representative’ subset 
of all states (possible locations)
E.g update only 10% of all possible locations
The sampling process is typically weighted, e.g. put more samples 
around the local peaks in the probability density function
However, you have to ensure some less likely locations are still tracked, 
otherwise the robot might get lost

5.6.2
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Interlude 2 …
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Other Localization Methods (not probabilistic)

Localization Based on Artificial Landmarks

5.7.1
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Triangulation

5.7.3
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Triangulation

5.7.3
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Triangulation

5.7.3
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Docking

5.7.3
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Bar-Code

5.7.3
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems

5.7.3
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Autonomous Map Building

Starting from an arbitrary initial point, 
a mobile robot should be able to autonomously explore the 

environment with its on board sensors, 
gain knowledge about it, 

interpret the scene, 
build an appropriate map 

and localize itself relative to this map.

SLAM
The Simultaneous Localization and Mapping Problem

5.8
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Map Building:
How to Establish a Map

1. By Hand

2. Automatically: Map Building

The robot learns its environment

Motivation:
- by hand: hard and costly
- dynamically changing environment
- different look due to different perception

3. Basic Requirements of a Map:
a way to incorporate newly sensed
information into the existing world model
information and procedures for estimating 
the robot’s position
information to do path planning and other 
navigation task (e.g. obstacle avoidance)

• Measure of Quality of a map
topological correctness
metrical correctness

• But: Most environments are a mixture of 
predictable and unpredictable features
→ hybrid approach
model-based vs. behaviour-based

12 3.5

predictability

5.8

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Map Building:
The Problems

1. Map Maintaining: Keeping track of 
changes in the environment

e.g. disappearing
cupboard

- e.g. measure of belief of each 
environment feature

2. Representation and 
Reduction of Uncertainty

position of robot -> position of wall

position of wall -> position of robot

• probability densities for feature positions
• additional exploration strategies

?

5.8
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General Map Building Schematics

5.8.1
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Map Representation

• M is a set n of probabilistic feature locations
• Each feature is represented by the covariance matrix Σt and an 

associated credibility factor ct

• ct is between 0 and 1 and quantifies the belief in the existence of the 
feature in the environment

• a and b define the learning and forgetting rate and ns and nu are the 
number of matched and unobserved predictions up to time k, 
respectively.

5.8.1
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Autonomous Map Building
Stochastic Map Technique

• Stacked system state vector:

• State covariance matrix:

5.8.1
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Cyclic Environments

• Small local error accumulate to arbitrary large global errors!
• This is usually irrelevant for navigation
• However, when closing loops, global error does matter

5.8.2

Courtesy of Sebastian Thrun
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Dynamic Environments

• Dynamical changes require continuous mapping

• If extraction of high-level features would be
possible, the mapping in dynamic
environments would become 
significantly more straightforward.

e.g. difference between human and wall
Environment modeling is a key factor 
for robustness

?

5.8.2
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Map Building:
Exploration and Graph Construction

1. Exploration

- provides correct topology
- must recognize already visited location
- backtracking for unexplored openings

2. Graph Construction

Where to put the nodes?

• Topology-based: at distinctive locations

• Metric-based: where features disappear or 
get visible

explore
on stack
already
examined

5.8
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Summary

• This lecture has explored issues relating to localization
Odometry and the errors therein
Sensor noise
Map representation
Representation of robots within maps

• We also looked at two (related) probabilistic approaches to performing 
localization.

Markov localization
Monte-Carlo localization

• These are both Bayes filters, and between them offer a promising 
solution to the localization problem.


