Motion Control (wheeled robots)

- Requirements for Motion Control
> Kinematic / dynamic model of the robot
$>$ Model of the interaction between the wheel and the ground
$>$ Definition of required motion -> speed control, position control
$>$ Control law that satisfies the requirements

Introduction: Mobile Robot Kinematics

- Aim
> Description of mechanical behavior of the robot for design and control
$>$ Similar to robot manipulator kinematics
$>$ However, mobile robots can move unbound with respect to its environment
- there is no direct way to measure the robot's position
- Position must be integrated over time
- Leads to inaccuracies of the position (motion) estimate $->$ the number 1 challenge in mobile robotics
> Understanding mobile robot motion starts with understanding wheel constraints placed on the robots mobility

Introduction: Kinematics Model

- Goal:
$>$ establish the robot speed $\dot{\xi}=\left[\begin{array}{lll}\dot{x} & \dot{y} & \dot{\theta}\end{array}\right]$ as a function of the wheel speeds steering angles β_{i}, steering speeds $\dot{\beta}_{i}$ and the geometric parameters of $t i$ robot (configuration coordinates).
$>$ forward kinematics

$$
\dot{\xi}=\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=f\left(\dot{\varphi}_{1}, \ldots \dot{\varphi}_{n}, \beta_{1}, \ldots \beta_{m}, \dot{\beta}_{1}, \ldots \dot{\beta}_{m}\right)
$$

$$
\left[\begin{array}{lllllllll}
\dot{\varphi}_{1} & \cdots & \dot{\varphi}_{n} & \beta_{1} & \ldots & \beta_{m} & \dot{\beta}_{1} & \ldots & \dot{\beta}_{m}
\end{array}\right]=f(\dot{x}, \dot{y}, \dot{\theta})
$$

$>$ why not

$$
\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]=f\left(\varphi_{1}, \ldots \varphi_{n}, \beta_{1}, \ldots \beta_{m}\right) \quad->\text { not straight forward }
$$

Representing Robot Position

- Representing to robot within an arbitrary initial frame
$>$ Initial frame: $\left\{X_{I}, Y_{I}\right\}$
$>$ Robot frame: $\left\{X_{R}, Y_{R}\right\}$
\Rightarrow Robot position: $\quad \xi_{I}=\left[\begin{array}{lll}x & y & \theta\end{array}\right]$
$>$ Mapping between the two frames
$>\dot{\xi}_{R}=R(\theta) \dot{\xi}_{I}=R(\theta) \cdot\left[\begin{array}{lll}\dot{x} & \dot{y} & \dot{\theta}\end{array}\right]$

$$
R(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Example: Robot aligned with Y_{I}

Example

$$
\begin{gathered}
R(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
\dot{\xi}_{R}=R\left(\frac{\pi}{2}\right) \dot{\xi_{I}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
\dot{y} \\
-\dot{x} \\
\dot{\theta}
\end{array}\right]
\end{gathered}
$$

Forward Kinematic Models

- Presented on blackboard

Wheel Kinematic Constraints: Assumptions

- Movement on a horizontal plane
- Point contact of the wheels
- Wheels not deformable
- Pure rolling
$>\mathrm{v}=0$ at contact point

- No slipping, skidding or sliding
- No friction for rotation around contact point
- Steering axes orthogonal to the surface
- Wheels connected by rigid frame (chassis)

Autonomous Mobile Robots, Chapter 3

Wheel Kinematic Constraints:

Fixed Standard Wheel

Example

$$
\begin{aligned}
& {[\sin (\alpha+\beta)-\cos (\alpha+\beta)(-l) \cos \beta] R(\theta) \dot{\xi}_{I}-r \dot{\varphi}=0} \\
& {[\cos (\alpha+\beta) \sin (\alpha+\beta) l \sin \beta] R(\theta) \dot{\xi}_{I}=0}
\end{aligned}
$$

- Suppose that the wheel A is in position such that
- $a=0$ and $b=0$
- This would place the contact point of the wheel on X_{I} with the plane of the wheel oriented parallel to Y_{I}. If $\mathrm{q}=0$, then ths sliding constraint reduces to:

$$
\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=0
$$

Autonomous Mobile Robots, Chapter 3

Wheel Kinematic Constraints:

Steered Standard Wheel

Autonomous Mobile Robots, Chapter 3

Wheel Kinematic Constraints:
Castor Wheel

Autonomous Mobile Robots, Chapter 3

Wheel Kinematic Constraints:

Swedish Wheel

Autonomous Mobile Robots, Chapter 3

Wheel Kinematic Constraints:

Spherical Wheel

Robot Kinematic Constraints

- Given a robot with M wheels
$>$ each wheel imposes zero or more constraints on the robot motion
$>$ only fixed and steerable standard wheels impose constraints
- What is the maneuverability of a robot considering a combination of different wheels?
- Suppose we have a total of $N=N_{f}+N_{s}$ standard wheels
$>$ We can develop the equations for the constraints in matrix forms:
$>$ Rolling
$J_{1}\left(\beta_{s}\right) R(\theta) \dot{\xi}_{I}+J_{2} \dot{\varphi}=0 \quad \varphi(t)=\left[\begin{array}{c}\varphi_{f}(t) \\ \varphi_{s}(t) \\ \left(N_{f}+N_{s}\right)\end{array}\right] \quad J_{1}\left(\beta_{s}\right)=\left[\begin{array}{c}J_{1 f} \\ J_{1 s}\left(\beta_{s}\right) \\ \left(N_{f}+N_{s}\right)\end{array}\right] \quad J_{2}=\operatorname{diag}\left(r_{1} \cdots r_{I}\right.$
$>$ Lateral movement

$$
C_{1}\left(\beta_{s}\right) R(\theta) \dot{\xi}_{I}=0
$$

$$
C_{1}\left(\beta_{s}\right)=\left[\begin{array}{c}
C_{1 f} \\
C_{1 s}\left(\beta_{s}\right) \\
\left(N_{f}+N_{s}\right)_{3}
\end{array}\right]
$$

Example: Differential Drive Robot

- Presented on blackboard

Mobile Robot Maneuverability

- The maneuverability of a mobile robot is the combination
$>$ of the mobility available based on the sliding constraints
$>$ plus additional freedom contributed by the steering
- Three wheels is sufficient for static stability
$>$ additional wheels need to be synchronized
$>$ this is also the case for some arrangements with three wheels
- It can be derived using the equation seen before
$>$ Degree of mobility
δ_{m}
$>$ Degree of steerability δ_{s}
$>$ Robots maneuverability $\quad \delta_{M}=\delta_{m}+\delta_{s}$

Mobile Robot Maneuverability: Degree of Mobility

- To avoid any lateral slip the motion vector $R(\theta) \dot{\xi_{I}}$ has to satisfy the following constraints:

$$
\begin{gathered}
C_{1 f} R(\theta) \dot{\xi}_{I}=0 \\
C_{1 s}\left(\beta_{s}\right) R(\theta) \dot{\xi}_{I}=0
\end{gathered} \quad C_{1}\left(\beta_{s}\right)=\left[\begin{array}{c}
C_{1 f} \\
C_{1 s}\left(\beta_{s}\right)
\end{array}\right]
$$

- Mathematically:
$>R(\theta) \dot{\xi}_{I}$ must belong to the null space of the projection matrix $\quad C_{1}(/$
$>$ Null space of $C_{1}\left(\beta_{s}\right)$ is the space N such that for any vector n in N

$$
C_{1}\left(\beta_{s}\right) \cdot n=0
$$

$>$ Geometrically this can be shown by the Instantaneous Center of Rotation (ICR)

Mobile Robot Maneuverability: Instantaneous Center of Rotation

- Ackermann Steering

Bicycle
b)

Mobile Robot Maneuverability: More on Degree of Mobility

- Robot chassis kinematics is a function of the set of independent constraints $\operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right]$
$>$ the greater the rank of,$C_{1}\left(\beta_{s}\right)$ the more constrained is the mobility
- Mathematically

$$
\delta_{m}=\operatorname{dim} N\left[C_{1}\left(\beta_{s}\right)\right]=3-\operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right] \quad 0 \leq \operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right] \leq 3
$$

- no standard wheels $\quad \operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right]=0$
- all direction constrained $\operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right]=3$
- Examples:
> Unicycle: One single fixed standard wheel
$>$ Differential drive: Two fixed standard wheels
- wheels on same axle
- wheels on different axle

Mobile Robot Maneuverability: Degree of Steerability

- Indirect degree of motion

$$
\delta_{s}=\operatorname{rank}\left[C_{1 s}\left(\beta_{s}\right)\right]
$$

$>$ The particular orientation at any instant imposes a kinematic constraint
$>$ However, the ability to change that orientation can lead additional degree of maneuverability

- Range of δ_{s} : $0 \leq \delta_{s} \leq 2$
- Examples:
$>$ one steered wheel: Tricycle
$>$ two steered wheels: No fixed standard wheel
$>\operatorname{car}$ (Ackermann steering): $\mathrm{N}_{\mathrm{f}}=2, \mathrm{~N}_{\mathrm{s}}=2 \quad->$ common axle

Mobile Robot Maneuverability: Robot Maneuverability

- Degree of Maneuverability

$$
\delta_{M}=\delta_{m}+\delta_{s}
$$

$>$ Two robots with same δ_{M} are not necessary equal
$>$ Example: Differential drive and Tricycle (next slide)
$>$ For any robot with $\delta_{M}=2$ the ICR is always constrained to lie on a line
\rightarrow For any robot with $\delta_{M}=3$ the ICR is not constrained an can be set to any point on the plane

- The Synchro Drive example:

$$
\delta_{M}=\delta_{m}+\delta_{s}=1+1=2
$$

Mobile Robot Maneuverability: Wheel Configurations

- Differential Drive

Tricycle

Five Basic Types of Three-Wheel Configurations

Synchro Drive

$$
\delta_{M}=\delta_{m}+\delta_{s}=1+1=2
$$

Mobile Robot Workspace: Degrees of Freedom

- Maneuverability is equivalent to the vehicle's degree of freedom (DOF)
- But what is the degree of vehicle's freedom in its environment?
$>$ Car example
- Workspace
> how the vehicle is able to move between different configuration in its workspace?
- The robot's independently achievable velocities
$>=$ differentiable degrees of freedom $(\mathrm{DDOF})=\delta_{m}$
> Bicycle: $\delta_{M}=\delta_{m}+\delta_{s}=1+1 \quad$ DDOF $=1 ; \quad D O F=3$
$>$ Omni Drive: $\delta_{M}=\delta_{m}+\delta_{s}=1+1 \quad$ DDOF $=3 ; \quad D O F=3$

Mobile Robot Workspace: Degrees of Freedom, Holonomy

- DOF degrees of freedom:
$>$ Robots ability to achieve various poses
- DDOF differentiable degrees of freedom:
> Robots ability to achieve various path

$$
D D O F \leq \delta_{m} \leq D O F
$$

- Holonomic Robots
$>A$ holonomic kinematic constraint can be expressed a an explicit function of position variables only
$>$ A non-holonomic constraint requires a different relationship, such as the derivative of a position variable
$>$ Fixed and steered standard wheels impose non-holonomic constraints

Path / Trajectory Considerations: Omnidirectional Drive

Path / Trajectory Considerations: Two-Steer

Motion Control (kinematic control)

- The objective of a kinematic controller is to follow a trajectory described by its position and/or velocity profiles as function of time.
- Motion control is not straight forward because mobile robots are nonholonomic systems.
- However, it has been studied by various research groups and some adequate solutions for (kinematic) motion control of a mobile robot system are available.
- Most controllers are not considering the dynamics of the system

Motion Control: Open Loop Control

- trajectory (path) divided in motion segments of clearly defined shape:
$>$ straight lines and segments of a circle.
- control problem:
$>$ pre-compute a smooth trajectory based on line and circle segments
- Disadvantages:
> It is not at all an easy task to pre-compute a feasible trajectory
$>$ limitations and constraints of the robots velocities and accelerations
$>$ does not adapt or correct the trajectory if dynamical changes of the environment occur.
$>$ The resulting trajectories are usually not smooth

Motion Control: Feedback Control, Problem Statement

- Find a control matrix K, if exists

$$
\begin{array}{r}
K=\left[\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23}
\end{array}\right] \\
\text { with } k_{i j}=k(t, e)
\end{array}
$$

- such that the control of $v(t)$ and $w(t)$

$$
\left[\begin{array}{c}
v(t) \\
\omega(t)
\end{array}\right]=K \cdot e=K \cdot\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]
$$

- drives the error e to zero.

$$
\lim _{t \rightarrow \infty} e(t)=0
$$

Motion Control:

Kinematic Position Control

The kinematic of a differential drive mobile robot described in the initial frame $\left\{x_{p}, y_{p}\right.$, $q\}$ is given by,

$$
{ }^{I}\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

where and are the linear velocities in the direction of the x_{I} and y_{I} of the initial frame Let a denote the angle between the x_{R} axis of the robots reference frame and the vector connecting the center of the axle of the wheels with the final position.

Kinematic Position Control: Coordinates Transformation

Coordinates transformation into polar coordinates with its origin at goal position:

$$
\begin{aligned}
& \rho=\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& \alpha=-\theta+\operatorname{atan} 2(\Delta y, \Delta x) \\
& \beta=-\theta-\alpha
\end{aligned}
$$

System description, in the new polar coordinates

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=} & {\left[\begin{array}{cc}
-\cos \alpha & 0 \\
\frac{\sin \alpha}{\rho} & -1 \\
-\frac{\sin \alpha}{\rho} & 0
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right] } \\
& \text { for } I_{1}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=} & {\left[\begin{array}{cc}
\cos \alpha & 0 \\
-\frac{\sin \alpha}{\rho} & 1 \\
\frac{\sin \alpha}{\rho} & 0
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right] } \\
& \text { for } \quad I_{2}=(-\pi,-\pi / 2] \cup \underset{\odot R . \text { siegwart, I. . } c}{(\pi / 2, \pi]}
\end{aligned}
$$

Kinematic Position Control: Remarks

- The coordinates transformation is not defined at $x=y=0$; as in such a point the determinant of the Jacobian matrix of the transformation is not defined, i.e. it is unbounded
- For $\alpha \in I_{1}$ the forward direction of the robot points toward the goal, for $\alpha \in I_{2}$ it is the backward direction.
- By properly defining the forward direction of the robot at its initial configuration, it is always possible to have $\alpha \in I_{1}$ at $t=0$. However this does not mean that a remains in I_{1} for all time t.

Kinematic Position Control: The Control Law

- It can be shown, that with

$$
v=k_{\rho} \rho \quad \omega=k_{\alpha} \alpha+k_{\beta} \beta
$$

the feedback controlled system

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{c}
-k_{\rho} \rho \cos \alpha \\
k_{\rho} \sin \alpha-k_{\alpha} \alpha-k_{\beta} \beta \\
-k_{\rho} \sin \alpha
\end{array}\right]
$$

- will drive the robot to $(\rho, \alpha, \beta)=(0,0,0)$
- The control signal v has always constant sign,
$>$ the direction of movement is kept positive or negative during movemer
$>$ parking maneuver is performed always in the most natural way and without ever inverting its motion.

Kinematic Position Control: Resulting Path

Kinematic Position Control: Stability Issue

- It can further be shown, that the closed loop control system is locally exponentially stable if

$$
k_{\rho}>0 ; k_{\beta}<0 ; k_{\alpha}-k_{\rho}>0
$$

- Proof: for small $x \rightarrow \cos x=1, \sin x=x$

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
-k_{\rho} & 0 & 0 \\
0 & -\left(k_{\alpha}-k_{\rho}\right) & -k_{\beta} \\
0 & -k_{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
\rho \\
\alpha \\
\beta
\end{array}\right] \quad A=\left[\begin{array}{ccc}
-k_{\rho} & 0 & 0 \\
0 & -\left(k_{\alpha}-k_{\rho}\right) & -k_{\beta} \\
0 & -k_{\rho} & 0
\end{array}\right]
$$

and the characteristic polynomial of the matrix A of all roots

$$
\left(\lambda+k_{\rho}\right)\left(\lambda^{2}+\lambda\left(k_{\alpha}-k_{\rho}\right)-k_{\rho} k_{\beta}\right)
$$

have negative real parts.

Summary

- This lecture looked at robot kinematics
- The point of discussing kinematic models is:
$>$ To allow us to build models of how a robot will move given particular actuator outputs
$\rightarrow A$ robot can then figure out what it should have done \odot
- We use this:
$>$ To establish the correct control regime for a specific task; or
$>$ A input to the localization process
(if I know where I was, and how I have moved, then I have some idea where I am now).

