
ADVERSARIAL SEARCH



Introduction

• One of the reasons we use search in AI is to help agents figure
out what to do.

• As we mentioned before, considering how sequences of actions
can be put together allows the agent to plan.

• (We will come back to this topic again in a few lectures’ time).

• Using the techniques we have covered so far, we can have a
single agent figure out what to do when:

– It knows exactly how the world is;

– Each action only has one outcome; and

– The world only changes when the agent makes it change.
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• In other words we can plan when the world is:

– Accessible;

– Deterministic; and

– Static

• Obviously these are unrealistic simplifications.

• Here we will consider how to handle one kind of dynamism:

– Other agents messing with the world.

• (In later lectures we will work towards dealing with other kinds
of complication.)
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Computers and Games

• The kind of search we will look at is applicable in a two person,
perfect information, zero sum games.

• Perfect information:

– Both players know exactly what the state of the game is.

• Zero sum:

– What is good for one player is bad for the other.

• This is true of many games.
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• Chess, Checkers, Go, . . .

• Othello, Connect 4, . . .
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• And less traditional games
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• These games are relatively easy to study at an introductory level.

• They have been studied just about as long as AI has been a
subject.
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• Some games are easily “solved”:

– Tic-Tac-Toe

– Connect 4

• Others have held out until recently.

– Checkers

– Chess

• Yet others are far from being mastered by computers.

– Go

• Chance provides another complicating element.
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•Why is Go so hard?
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• For many of these games

– State space

– Iconic

representations seem natural.

•Moves are represented by state space operators.

• Search trees can be built much as before.

• However, we use different techniques to choose the optimal
moves.
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Game formulation

•We can think of a game as a search problem with the following
elements:

– The initial state, S0.

– PLAYER(s), which player can move in state s.

– ACTION(s), the legal set of actions a in state s.

– The transition model RESULT(s, a)which gives the outcome of
each action in each state.

– TERMINAL-TEST(s), which says if the game is over.

– UTILITY(s, p), a utility function which says what the benefit is
to player p of the game ending in state s.

• The utility will vary from game to game. In chess, the utility to a
player is 1, 0, or 1

2
.
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• A zero sum game is one in which the total gains of both players
sum to zero.

• The usual way that chess is scored makes it a constant sum game
— the scores of the two players add up to 1.

• It is easy to transform a constant sum game into a zero-sum
game by a simple (affine) transformation of the utility function.

•We therefore often use the terms interchangeably.
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• As for a search problem, the initial state, action set and transition
model define a game tree for the game.

• Nodes are states of the game and edges are moves.

•We draw the tree assuming two players, MAX and MIN (for
reasons that will become obvious) where MAX moves first.

• The next slide gives the tree for tic-tac-toe (or what I would call
“noughts and crosses”).
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• Since MAX moves first, even numbered layers are the ones where
MAX gets to choose what move to make.

• The first node is on the zeroth layer.

•We call these “MAX nodes”.

• “MIN nodes” are defined similarly.

• A ply of ply-depth k are the nodes at depth 2k and 2k + 1.

•We usually estimate, in ply, the depth of the “lookahead”
performed by both agents.
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• In general we can’t search the whole tree.

• Tic-tac-toe might have less than 9! (362, 880) terminal nodes but
many games are bigger.

– Chess: 1040 nodes

– ≈ 1020 centuries to build game tree.

• Distinguish between the game tree and the search treewhich is
what we actually construct.

• Typically we just search to a limited horizon (like
depth-bounded).

• Then evaluate (using some heuristic) the leaf nodes of the seach
tree.

• Then extract the best move at the top level.
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• Key thing is that we have to take into account what the other
player is doing.

• Rather than the simple path that is a solution in a search
problem, we need a contingent strategy.

•We need to look at MAX’s first move, then every move MAX

might take in response to what MIN does, and so on.

• This gives us an optimal strategy in the sense that we do as well
as we possibly can (as well as any other strategy) against an
infallible opponent.

(There may be better strategies against weaker opponents).
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Minimax search

• One-ply (two move) search tree:
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•We determine the optimal strategy by establishing the minimax
value of each node, which is the value to MAX of being in the
state corresponding to s.

•Well, the value assuming that both players finish the game out
perfectly.

• How do we do this?
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• Assume our utility function gives terminal nodes high positive
values if they are good for MAX

• And low values if they are good for MIN

• Now, look at the leaf nodes and consider which ones MAX wants:

– Ones with high values.

• MAX could choose these nodes if it was his turn to play.

• So, the value of the MAX-node parent of a set of nodes is the max
of all the child values.
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• Similarly, when MIN plays she wants the node with the lowest
value.

• So the MIN-node parent of a set of nodes gets the min of all their
values.

•We back up values until we get to the children of the start node,
and MAX can use this to decide which node to choose.
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• There’s an algorithm for this.
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function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the a in ACTIONS(state) maximizing
MIN-VALUE(RESULT(a, state))

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v←∞
for a, s in SUCCESSORS(state) do v←MIN(v, MAX-VALUE(s))
return v
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function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v←−∞
for a, s in SUCCESSORS(state) do v←MAX(v, MIN-VALUE(s))
return v
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• How about problems when we can’t build the search tree down
to the leaf nodes?

•We choose a number of ply to search and have a utility function
for incomplete states.

• Then we use the minimax algorithm as before.

• There is an assumption which is that the utility function works
as a better guide on nodes down the tree than on the direct
successors of the start node.

• This should be the case (modulo horizon effects).

• Let’s look at a concrete example—Tic-tac-toe.
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• Let MAX play crosses and go first.

• Breadth-first search to depth 2.

• Utility function e(p):

e(p) =































∞ if p is a win for MAX

−∞ if p is a win for MIN

val otherwise

where

val = (possible winning rows columns diagonals for MAX)

−(possible winning rows columns diagonals for MIN)
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• So,

	 O
	 X

© 1998 Morgan Kaufman Publishers

• Scores:
6− 4 = 2

•We also use symmetry to avoid having to generate loads of
successor states, so

O
	 X

		 O
	 X 	 X

		 O
	 X
O
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• are all equivalent.
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•We run the depth 2 search, evaluate, and back up values
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• Unsurprisingly (for anyone who ever played Tic-tac-toe):

	 X

© 1998 Morgan Kaufman Publishers

• Is the best move.

• So MAX moves and then MIN replies, and then MAX searches
again:
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• Here there are two equally good best moves.

• So we can break the tie randomly.

• Then we let MIN move and do the search again.
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• And so on.
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Alpha-Beta search

•Minimax works very neatly, but it is inefficient.

– Exponential in the number of moves.

• The inefficiency comes from the fact that we:

– Build the tree,

– THEN back up the values

• If we combine the two we get massive savings in computation.

• How do we manage this?

• Let’s think through the construction of the search tree.
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• After we have built the first branch, we know that the least
valuable move will be worth 3 to MAX.

MAX

3 12 8

MIN 3

3

• Put another way, since we have a MIN node worth 3, the worst
that MAX can do is to have a move worth 3.
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• Now as soon as we have the first leg of the second branch, we
know that we don’t need to expand the branch any more.

MAX

3 12 8

MIN 3

2

2

X X

3

• It will have at most a value of 2 and MAX won’t pick it.
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• Things aren’t so easy with the third branch.

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

• After the first leg, the branch could have a very high value.
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• But this value soon falls.
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• And then falls again when we explore the final leaf node.

MAX
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MIN

3
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5

5
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2

3

Now, how can we use this?
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•Well, the reason we could avoid an search here is that we got to a
MIN node that was going to have a smaller value than a MIN

node we had already got a value for.

MAX

3 12 8

MIN 3

2

2

X X

3

• Anytime that happens we can stop searching down that branch.
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•We give the name α to that high value at the MIN node.

..

..

..

MAX

MIN

MAX

MIN V

• If α > v we will never get to the node labelled with v.
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•We can also do the dual of this.

• That is we can prune below a MIN node, when we find child
MAX node that has a higher value than an explored MIN node.

•We give the name β to the low value at the MAX node.
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function ALPHA-BETA-DECISION(state) returns an action

v←MAX-VALUE(state,∞,−∞)
return the a in ACTIONS(state) with value v

function MAX-VALUE(state,α,β) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
v←−∞
for a in ACTIONS(state) do
v←MAX(v, MIN-VALUE(RESULT(s, a),α,β))
if v ≥ β then return v
α←MAX(α, v)

return v
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function MIN-VALUE(state,α,β) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
v←∞
for a in ACTIONS(state) do
v←MIN(v, MAX-VALUE(RESULT(s, a),α,β))
if v ≤ α then return v
β←MIN(β, v)

return v
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• Let’s look at this in the context of Tic-tac-toe.
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•Well, when we get to node A, we don’t have to expand any
further.

• So we save the evaluation of B, C and D.

•We also don’t have to search any of the nodes below these nodes.

• This does nothing to stop MAX finding the best move.

• It also works when we don’t have a winning move for MIN.
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• Using α-β pruning always gives the same best move as full
minimax.

• However, often the approach involves less searching.

• For example, for chess, if we can evaluate 1 million moves a
second, then we can search around 5 ply.

(Assumes using aorund 3 minutes a move, which is about right
for tournament play)

– Easily beaten by an average human player.

•With α-β pruning we can search about 10 ply.

– Expert level play.
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Forward pruning

• The neat thing about α-β pruning is this fact that it always gives
the same move as a full search.

• However, game trees can still get too big.

•When this happens we can employ forward pruning.

– Just don’t build the whole tree.

• One approach is beam search, we just expand the n best moves at
each level.

– A mistake in evaluation can be fatal.

• Better is PROBCUT which keeps statistics from previous games
and prunes nodes which are likely to be outside the current α-β
window.
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Horizon effects

•When we search a fixed number of ply, we can easily get misled
by the evaluation function.

• There might be a very bad position just over the horizon.

• Here, Red is going to lose its bishop, but putting white into
check appears to avoid the problem.
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• Equally, if we don’t search far enough, we might not see the bad
consequences of an action.

• Stop at quiescent nodes (value is the same as it would be of you
looked ahead a couple of moves).

• Can be exploited by opponents; pushing moves back behind the
horizon.

– Kasparov tried to work this trick against Deep Blue in their
first match.

• A similar problem occurs because we assume that players
always make their best move:

– “Bad” moves can mislead a minimax-style player.
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Stochastic games

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

•White is choosing to move without knowing what Black’s
potential next moves will be.
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•We handle this by expanding the game tree.

• Add an additional player, CHANCE who controls how we get
from MAX nodes to MIN nodes

• CHANCE tells us how probable it is to make a given transition.

•We use this probability to average over the children if each
chance node when we back values up.

– We compute the expected value of the moves.

•We then do the usual minimax thing.
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MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

• The value of the leftmost CHANCE node is:

(0.5× 2) + (0.5× 4)
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• Here’s the heart of an algorithm to do this kind of evaluation:

if state is a MAX node then
return the highest EXPECTIMINIMAX-VALUE of
SUCCESSORS(state)

if state is a MIN node then
return the lowest EXPECTIMINIMAX-VALUE of
SUCCESSORS(state)

if state is a chance node then
return average of EXPECTIMINIMAX-VALUE of
SUCCESSORS(state)

. . .
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Partial observability
• In many games you don’t have full information about the state
of the game.
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• In card games the uncertainty is in what the allocation of cards is.

• A bit analagous to a big dice throw at the start of the game.

• Intuition:

– Consider all possible allocations.

– Play out each one and evaluate it.

– Average over the possible values of the moves

• If s is a deal, we pick the a:

argmaxa
∑

s
Pr(s)MINIMAX(RESULT(s, a))
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• Four-card hearts hand, MAX to play first

6

4

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
−2

8

9 2

6 6 8 7 6 6 7 6 6 7 6 6 7 7

2 9 3 2 9 3 2 3 3 3
1

4444

6MAX

MIN

MAX

MIN

• Repeat for all possible combinations and average over the
outcomes to assign values to states.

• Then do minimax.
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State of the art

• Checkers:

– Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994.

– Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions.

• Othello:

– A computer program defeated the human world champion in
1997.

– Generally acknowledged that humans can beat computers at
Othello.
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• Chess:

– Deep Blue defeated human world champion Gary Kasparov
in a six-game match in 1997.

– Kasparov had defeated the program the previous year.
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• Chess:

– Deep Blue searched 200 million positions per second, and
used very sophisticated evaluation, allowing search to
regularly reach 14 ply.

– Also followed some interesting lines of play up to 40 ply.

– Had an extensive database of opening and closing moves.

– Deep Blue used specialised hardware, but increases in
processor speed mean equivalent performance can now be
obtained using off-the-shelf hardware.

– Recent games suggest that computers have pulled ahead of all
human players.
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• Go:

– b > 300 and evaluation functions are hard to write.

– However, simulation-based techniques have started to have
some success.

– On a reduced board (9× 9) programs play at the master level.

– But still play like amateurs on a full board.
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Summary

•We have looked at game playing as adversarial state-space
search.

•Minimax search is the basic technique for finding the best move.

• α/β search gives greater efficiency, especially when coupled
with forward pruning.

• Games of chance can be handled by adding in the random player
CHANCE.

• Partial observability adds another level of complexity.
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