
CLASSICAL PLANNING

•We have talked about an agent’s interaction with its
environment:

sensors

effectors

percepts

actions

Environment

• But what about when it has a more complex task to solve?
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Texas A & M
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• Could we use search techniques for this?
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• Could we use search techniques for this?

•We could, but we’d need a lot of domain specific heuristics.

– Hard to develop

• Prefer a more general solution.
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• Could we use Wumpus-world logic for this?
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• Could we use Wumpus-world logic for this?

•We could, but we’d need a lot of computation.

– Lots of reasoning to consider all the possible moves from each
position.

• Prefer a faster solution
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AI Planning

• Planning is the design of a course of action that will achieve
some desired goal.

• Basic idea is to give a planning system:

– (representation of) goal/intention to achieve;

– (representation of) actions it can perform; and

– (representation of) the environment;

and have it generate a plan to achieve the goal.

• This is automatic programming.
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planner

plan 

environment stategoal actions
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• Given the problems with search and the use of simple logic,
researchers turned to a more factored representation.

• An early successful approach to planning was STRIPS:

– Stanford Research Institute Problem Solver.

• The textbook talks about PDDL rather than STRIPS, but the
representations are very similar

– PDDL can use negative literals in preconditions and goals.
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• STRIPS was used in Shakey the robot:
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Representations

• Question: How do we represent. . .

– goal to be achieved;

– state of environment;

– actions available to agent;

– plan itself.

• Answer: We use logic, or something that looks a lot like logic.
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•We’ll illustrate the techniques with reference to the blocks world.

• A simple (toy) world, in this case one where we consider toys:
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• The blocks world contains a robot arm, 3 blocks (A, B and C) of
equal size, and a table-top.
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• The aim is to generate a plan for the robot arm to build towers
out of blocks.

• For a formal description, we’ll clean it up a bit:

���������
���������
���������
���������B

A
C
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• To represent this environment, need an ontology.

On(x, y) obj x on top of obj y
OnTable(x) obj x is on the table
Clear(x) nothing is on top of obj x
Holding(x) arm is holding x
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• Here is a representation of the blocks world described above:

Clear(A)
On(A,B)
OnTable(B)
Clear(C)
OnTable(C)

• Use the closed world assumption

– Anything not stated is assumed to be false.
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• A goal is represented as a set of formulae.

• Here is a goal:

{OnTable(A), OnTable(B), OnTable(C)}
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• Actions are represented as follows.

Each action has:

– a name

which may have arguments;

– a pre-condition list

list of facts which must be true for action to be executed;

– a delete list

list of facts that are no longer true after action is performed;

– an add list

list of facts made true by executing the action.

Each of these may contain variables.
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• The stack action occurs when the robot arm places the object x it
is holding is placed on top of object y.

Stack(x, y)
pre Clear(y) ∧ Holding(x)
del Clear(y) ∧ Holding(x)
add ArmEmpty ∧ On(x, y)

•We can think of variables as being universally quantified.

• ArmEmpty is an abbreviation for saying the arm is not holding
any of the objects.
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• The unstack action occurs when the robot arm picks an object x
up from on top of another object y.

UnStack(x, y)
pre On(x, y) ∧ Clear(x) ∧ ArmEmpty
del On(x, y) ∧ ArmEmpty
add Holding(x) ∧ Clear(y)

Stack and UnStack are inverses of one-another.
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• The pickup action occurs when the arm picks up an object x from
the table.

Pickup(x)
pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty
del OnTable(x) ∧ ArmEmpty
add Holding(x)
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• The putdown action occurs when the arm places the object x onto
the table.

PutDown(x)
pre Holding(x)
del Holding(x)
add Clear(x) ∧ OnTable(x) ∧ ArmEmpty

cisc3410-fall2010-parsons-lect08 23

•What is a plan?

A sequence (list) of actions, with variables replaced by constants.

• So, to get from:

������������������

B
A
C

to
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���������
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B
A

C

•What plan do we need?
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•We need the plan:

Unstack(A)
Putdown(A)
Pickup(B)

Stack(B,C)
Pickup(A)
Stack(A,B)
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Naive Planner

• In “real life”, plans contain conditionals (IF .. THEN...) and
loops (WHILE... DO...), but most simple planners cannot
handle such constructs — they construct linear plans.

• Simplest approach to planning:

means-ends analysis.

• Start from where you want to get to (ends) and apply actions
(means) that will achieve this state.
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• Involves backward chaining from goal to original state.

• Start by finding an action that is consistent with having the goal
as post-condition.

Assume this is the last action in plan.

• Then figure out what the previous state would have been.

Try to find action that has this state as post-condition.

• Recurse until we end up (hopefully!) in original state.

•We say that an action a can be executed in state s if s entails the
precondition pre(a) of a.

s |= pre(a)

• This is true iff every positive literal in pre(a) is in s, and every
negative literal in pre(a) is not.
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Here’s an algorithm for finding a plan:

function plan(
d : WorldDesc, // environment state
g : Goal, // current goal
p : Plan, // plan so far
A : set of actions // actions available)

1. if d |= g then
2. return p
3. else
4. choose some a in A with g |= add(a)
5. set g = (g− add(a)) ∪ pre(a)
6. append a to p
7. return plan(d, g, p,A)

• Note that we ignore the delete list.

cisc3410-fall2010-parsons-lect08 28



• How does this work on the previous example?
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•We start with the goal state:

On(A,B)
On(B,C)

OnTable(C)
ArmEmpty

• Then pick an action which
has an add list that is
satisfied by this state:

Stack(A,B)

• To get the state before this
action, delete the add list
and add the preconditions.

����������������

B
A

C
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• This gives us:

Clear(B)
On(B,C)

OnTable(C)
Holding(A)

• Pick the previous action in
the plan, now it is an action
whose add list is satisfied
by the above state.

Pickup(A)

���������
���������
���������
���������

C

A

B
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• Now we are here:

Clear(B)
On(B,C)

OnTable(C)
OnTable(A)
ArmEmpty

• And so we go, working
backwards until we get to
the initial state.

����������������

A
B
C
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• This algorithm is not guaranteed to find a plan to satisfy the goal.

– Why is that?

• However, this algorithm is sound: If it finds the plan is correct.
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• Some problems:

– negative goals;

– maintenance goals;

– conditionals & loops;

– exponential search space;

– logical consequence tests;
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• Negative goals are a problem because?
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• Negative goals are a problem because. . .

• How would you write down:

Build any tower of blocks where block B is not on the table.

without enumerating all the towers that you could build?
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•Maintenance goals are a problem because?
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•Maintenance goals are a problem because. . .

• How would you write down:

Keep moving the bricks around so that there is always at
least two bricks on the table.

without enumerating all the towers that you could build?

•Maintenance goal:
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• Exponential search space is a problem because?
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• Exponential search space is a problem because:

•Many planning problems have ∼ 10100states.
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• Logical consequence tests are a problem because?
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• Logical consequence tests are a problem because, to quote
Wikipedia:

Depending on the underlying logic, the problem of
deciding the validity of a formula varies from trivial to
impossible.

For propositional logic, the problem is decidable but
Co-NP-complete, and hence only exponential-time
algorithms are believed to exist for general proof tasks.

For a first order predicate calculus identifying valid
formulas is recursively enumerable: given unbounded
resources, any valid formula can eventually be proven.

However, invalid formulas cannot always be recognized.

(this was heavily cut down, emphasis is mine)
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Search space issues

• Another problem with the search space is:

– how do we pick an action?

•We are just assuming that you can pick a good one.

– In general, not a good tactic.

• Apply heuristics and use A∗

– This is just a form of search problem after all
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Didn’t you say before that we shouldn’t think of this as search?

Well, yes...
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• The difference is that with the factored search operators we can
look for domain independent heuristics.

– Ones that will work for planning problems in general.

• Ignore preconditions

– Just as in search we can establish heuristics that relax the
constraints on the problem ensuring that they are admissable.

• Ignore selected preconditions.

• Ignore delete lists

– No action undoes the effect of another action.
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•While this gives us a set of heuristics, the state space is still big

– ∼ 10100 remember

• State abstraction.

– plan in a space that groups states together

• The textbook talks about planning for 10 airports with 50 planes
and 200 pieces of luggage.

– Every plane can be at any airport and each package can be on
any plane or unloaded at an aiport.

– 5010 × 20050+10 ≈ 10155 states
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• If all the packages are constrained to be at only 5 of the aiports,
and all packages at one airport have the same destination, we
can reduce the problem to have just 5 aiports and and one plane
and package at the same airport.

– 510 × 550+10 ≈ 1017 states

• Find solution and then expand back to the larger problem,
maybe by composing solutions.

• Not optimal but easier.
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The Frame Problem

• A general problem with representing properties of actions:

How do we know exactly what changes as the result of
performing an action?

If I pick up a block, does my hair colour stay the same?

• One solution is to write frame axioms.

Here is a frame axiom, which states that my hair colour is the
same in all the situations s′ that result from performing Pickup(x)
in situation s as it is in s.

∀s, s′.Result(SP,Pickup(x), s) = s′ ⇒
HCol(SP, s) = HCol(SP, s′)
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• Stating frame axioms in this way is infeasible for real problems.

• (Think of all the things that we would have to state in order to
cover all the possible frame axioms).

• STRIPS solves this problem by assuming that everything not
explicitly stated to have changed remains unchanged.

• The price we pay for this is that we lose one of the advantages of
using logic:

– Semantics goes out of the window

• However, more recent work has effectively solved the frame
problem (using clever second-order approaches).
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Sussman’s Anomaly

• Consider again the following initial state and goal state:

���������
���������
���������
���������B

A
C

to

����������������

B
A

C

• Clearly the first operation is to unstack A from C.
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• which gets us to here:

����������������

B C

A

• But what next.

• If the planner considers that the final state is to have:

On(A,B)
On(B,C)

then making the next move Stack(A,B)might seem to be close to
the goal.
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•We then get to:

���������
���������
���������
���������B C

A

which is no closer to our real goal.

• In fact it just means a longer path to the goal which involves
going back through the previous state.

• This is a big problem with linear planners

• How could we modify our planning algorithm?
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•Modify the middle of the algorithm to be:

1. if d |= g then
2. return p
3. else
4. choose some a in A
4a. if no clobber(a, rest of plan)
5. set g = (g− add(a)) ∪ pre(a)
6. append a to p
7. return plan(d, g, p,A)

• But how can we do this?
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Partial Order Planning

• The answer to the problem on the previous slide is to use partial
order planning.

• Basically this gives us a way of checking before adding an action
to the plan that it doesn’t mess up the rest of the plan.

• The problem is that in this recursive process, we don’t know
what the “rest of the plan” is.

• Need a new representation partially ordered plans.

• This means remembering what a “partial order” is.
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Representation

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Finish

Start

LeftShoeOn,    RightShoeOn
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Partially ordered plans

• Partially ordered collection of steps with

– Start step has the initial state description as its effect

– Finish step has the goal description as its precondition

– causal links from outcome of one step to precondition of
another

– temporal ordering between pairs of steps

• Open condition = precondition of a step not yet causally linked

• A plan is complete iff every precondition is achieved

• A precondition is achieved iff it is the effect of an earlier step and
no possibly intervening step undoes it
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Plan construction

•We start with just the start and end states.

cisc3410-fall2010-parsons-lect08 57

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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• Then we add in actions, as they seem appropriate.

•We introduce actions that achieve:

– either the pre-conditions of the final state; or

– the pre-conditions of actions that were already added.

•Matching pre- and post-conditions are linked.
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Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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• Some actions will introduce ordering constraints on other actions
by having post-conditions that make the pre-conditions of those
other actions false.

• These force us to order some actions with respect to each other.

• Thus we don’t care what order we buy the milk and bananas in,
but we have to do both before we go home.
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At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)
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• The causal links between actions give us a way to detect the
“clobbering” mentioned in the previous algorithm.

• This tells us how the steps must be ordered

– If they need ordering.
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Clobbering

• A clobberer is a potentially intervening step that destroys the
condition achieved by a causal link. E.g., Go(Home) clobbers
At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)
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Planning process

• Operators on partial plans:

– add a link from an existing action to an open condition

– add a step to fulfill an open condition

– order one step wrt another to remove possible conflicts

• Gradually move from incomplete/vague plans to complete,
correct plans

• Backtrack if an open condition is unachievable or if a conflict is
unresolvable
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function POP(initial, goal, operators) returns plan

plan←MAKE-MINIMAL-PLAN(initial, goal)
loop do

if SOLUTION?( plan) then return plan
Sneed, c← SELECT-SUBGOAL( plan)
CHOOSE-OPERATOR( plan, operators, Sneed, c)
RESOLVE-THREATS( plan)

end

function SELECT-SUBGOAL( plan) returns Sneed, c

pick a plan step Sneed from STEPS( plan)
with a precondition c that has not been achieved

return Sneed, c

cisc3410-fall2010-parsons-lect08 66

procedure CHOOSE-OPERATOR(plan, operators, Sneed, c)

choose a step Sadd from operators or STEPS( plan) that has c as an
effect

if there is no such step then fail
add the causal link Sadd

c−→ Sneed to LINKS( plan)
add the ordering constraint Sadd ≺ Sneed to ORDERINGS( plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS( plan)
add Start ≺ Sadd ≺ Finish to ORDERINGS( plan)
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procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si
c−→ Sj in LINKS( plan) do

choose either
Demotion: Add Sthreat≺ Si to ORDERINGS( plan)
Promotion: Add Sj ≺ Sthreat to ORDERINGS( plan)

if not CONSISTENT( plan) then fail
end
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Properties of POP

• Nondeterministic algorithm: backtracks at choice points on
failure:

– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer

– selection of Sneed is irrevocable

• POP is sound, complete, and systematic (no repetition)

• Extensions for disjunction, universals, negation, conditionals

• Can be made efficient with good heuristics derived from
problem description

• Particularly good for problems with many loosely related
subgoals
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Sussman’s Anomaly Revisited

• Another version of Sussman’s anomaly appears here:

���������
���������
���������
���������B A

C

to

��������
��������
��������
��������

B
A

C

• In this case the problem appears once we have placed all the
blocks on the table.
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• From here:

������������������

B CA

this:

���������
���������
���������
���������B C

A

seems as good a move as this:

����������������

C A
B

without some special purpose heuristic.
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Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y) 
   Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem
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B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)
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B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)
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B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)
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B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

cisc3410-fall2010-parsons-lect08 76



State of the art

• Though POP is quite intuitive, it isn’t the best planner out there
any more.

• Currently the hottest planning approaches are the following.

• SATPlan

– Specify the problem in logic, including all possible transitions.

– See if there is a satisfying model

This shifts the computational burden to the creation of all
possible sequences, which can then be checked fast for specific
goals.

• Search with clever general purpose heuristics.

• GraphPlan

– Build a graph which approximates the state space.
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Summary

• This lecture has looked at planning.

•We started with a logical view of planning, using STRIPS
operators.

•We also discussed the frame problem, and Sussman’s anomaly.

• Sussman’s anomaly motivated some thoughts about
partial-order planning.

•We looked at partial order planning in some detail, and then
talked about the POP algorithm.
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