PLANNING IN THE REAL WORLD

Real world planning

e Last time we looked at the STRIPS approach to plannning, which
works for simple examples.

® We also looked at how partial-order planning solved some
problems with the STRIPS approach.

® This time we’ll look at further extensions that get us closer to
being able to deal with the real world.

— Dealing with abstract actions
— Learning the effects of actions
— A non-deterministic world.

cisc3410-fall2010-parsons-lect09 2

Hierachical planning

e State-of-the-art planning algorithms can build plans with a few
thousand actions.

— Sounds like a lot
® BUT small compared to a lifetime of actions:
10° x 10 x 10° = 10
(muscles x frequency x lifetime)
® Even a few weeks will contain ~ 10'° actions.

e We deal with this by abstraction.

cisc3410-fall2010-parsons-lect09

Vacation planning

cisc3410-fall2010-parsons-lect09

Vacation planning

® We plan:

Go to aiport
Catch plane
Got to hotel

not at the level of:

Go to door
Exit room
Go to end of corridor

e However, we can refine any of the abstract actions as required.

cisc3410-fall2010-parsons-lect09

Hierarchical task networks

e In HTNs we still use the standard STRIPS rules.
— We will now call these primitive actions.

® In addition we have high level actions (HLA).

e Each HLA has a refinement.

® A refinement is a sequence of actions
— either HLAs or primitive actions.

thus to get to primitive actions from an HLA might take several
refinements.

cisc3410-fall2010-parsons-lect09

® Consider the high level action:
Go(Home EWR
this has refinements:

RefinemenGo(Home EWR
STEPS [TaxiHome EWR)|)

RefinemenGo(Home EWR
STEPS |Drive(Home EWREconomyLotH
Shuttli¢EWREconomyLotHEWR)])

RefinemenGo(Home EWR
STEPS [WalkHome GrandStSubway
SubwayGrandSt PennStation
NJT(PennStationEWR)])

cisc3410-fall2010-parsons-lect09

* Navigation for a grid-based robot:
Navigaté|a, b|, [x,y])
this has refinements:
Navigaté|a, bl, [X,y])
PRECOND.a=Xx,b=y
STEPS [])

Navigate|a, b], [x,y])
PRECOND: Connecteda — 1,b], [x,V]),
STEPS [Left Navigaté[a — 1, b], [x,V])])

Navigaté[a, b], [x, y])
PRECOND: Connecteda+ 1, b|, [x,y]),
STEPS [Left Navigaté[a+ 1,b], [x,Y])])

e Here the refinements are recursive

cisc3410-fall2010-parsons-lect09

e Why will this help?

cisc3410-fall2010-parsons-lect09

¢ Can first plan at an abstract level and only later worry about
which refinements to use.

® So don’t have to think about all the primitive actions that are
available.

— Not when doing the abstract plan.
— Not when refining.

® Massively reduces the search space.

cisc3410-fall2010-parsons-lect09

10

Implementations

e An implementation of of an HLA is a refinement that only
contains primitive actions.

— It is a refinement that could be executed.
® An implementation of:
Navigaté|1, 3], [3, 2])
1S
[Right Right Down

cisc3410-fall2010-parsons-lect09

11

® A high level plan is a sequence of HLAs:
Navigaté|1, 3], |3, 2]), CollectDirt, Navigate 3, 2|, |1, 3])

e An implementation of a high level plan is just the concatenation
of implementations of each HLA in the plan:

[Right Right Down SuckDirt Left Up, Left

e A high level plan achieves a goal from a given state if at least one
of its implementations achieves the goal from that state.

— Only need one implementation to work for the high level plan
to be good.

cisc3410-fall2010-parsons-lect09 12

e Hierarchical planning often starts with a single top level action
Act

— Find an implementation that satisifes the goal.
e Simple algorithm,

® Repeatedly picks an HLA in the current plan and replace it with
a refinement until the plan reaches the goal.

cisc3410-fall2010-parsons-lect09 13

function H-SEARCH (problem, hierarchy) returns plan or fail
frontier <—a FIFO queue with [Act] as only element

loop do
if EMPTY?(frontier) then return fail
plan <— POP(frontier)
hla < the tirst HLA in plan, or null if none
prefix,suffix <— action sequences before and after hla in plan
outcome <— RESULT (problem.INITIAL-STATE, prefix)
if hla is null then
if outcome satisties problem.GOAL then return plan
else
for each sequence in REFINEMENTS (hla, outcome, hierarchy)
do
frontier <
INSERT(APPEND(prefix, sequence, suffix), frontier).

cisc3410-fall2010-parsons-lect09

14

® The algorithm on the previous slide is basically breadth-first.
® There is a set of plans in frontier.
® The algorithm takes each plan and expands the first HLA.

® One new plan is generated for each refinement of that HLA.

— Each new plan is the old plan with an HLA replaced by its
refinement.

and each new plan is put back on frontier

¢ Can easily develop depth-first or interative deepening versions.

cisc3410-fall2010-parsons-lect09

15

® The key to hierachical planning is the set of refinements
— Plan library

¢ Encoding knowledge in both actions sequences and
preconditions.

— Want HLAs with small number of refinements, but each
refinement having lots of actions.

® O-PLAN used by Hitachai to develop production plans.

— 350 products
— 35 machines
— 2000 operations

can generate 30-day schedules.

cisc3410-fall2010-parsons-lect09 16

Reinforcement learning

® We have been considering techniques for planning.

® The view we have taken is that an agent knows all about its

environment and plans by thinking hard about what it wants to
do.

® Instead we can think of planning as a process of exploring the
environment around the agent.

e We'll look at a number of approaches based on this idea.
® These are all types of reinforcement learning.

® They also link back to search (again).

cisc3410-fall2010-parsons-lect09 17

e We'll start by considering that we have a state-space in which the
agent is carrying out actions.

® We want to come up with a plan.
e Well, in fact what we end up with is a policy.

e That is matrix that tells us which action to carry out in which
state.

e This is a conditional plan, which is much more robust than a linear
plan as produced by STRIPS.

® One way to get this is by determining a value for each state —
the for each state helps to tell us which action we should pick.

cisc3410-fall2010-parsons-lect09 18

Learning values for states

e We will start by assuming that the agent knows the results and
costs of each operation.

e We will also assume that it can build the whole search tree.
e This is just what we did when we dealt with search before.
e We then set h(n) = 0 for all n and run an A* search.

® When the agent has expanded node n; to give a set of children
o(n;), it updates its h(n;) to be:

h(ni) ‘= 1min [h(l’h) + C(ni, nj)]

njEes(n;)
where c(n;, nj) is the cost of moving from n; to n.

e We further assume that the agent can recognise the goal state
and knows that h(goal) is 0.

cisc3410-fall2010-parsons-lect09

19

® [et’s look at how this works.

cisc3410-fall2010-parsons-lect09

20

® Robot starts at S and wants to get to G.

G

W

S

® Robot can move up, down, left, right. All moves have the same
cost = 1.

cisc3410-fall2010-parsons-lect09

21

® The grid has a corresponding search space.

%
(% V///chn
P
%

® The state space assumes breadth-first search and doesn’t visit the
same state twice.

cisc3410-fall2010-parsons-lect09 22

e Initially all h values are zero.

N
)

%2
o

D
)

SZO

S
0

T

2

cisc3410-fall2010-parsons-lect09

23

® Then the agent updates the value for §,. Both its children have
value 0 and it costs 1 to get to them, so:

2
()

o2
o

jop
)

S
0

W
om(/)

S
0

n
2]

cisc3410-fall2010-parsons-lect09

24

® The same update will apply to each node in turn, except S
which has its value fixed at 0 since it is the goal.

S |S |S |S
21 31 51 QO

]
S S |S
11% 1| 1]
S |S, |S |S

cisc3410-fall2010-parsons-lect09

25

® The agent repeats the process. Now § has value 2 since its
children have value 1

N
=

Kop
=

W
o

821

S
'1

T

2

cisc3410-fall2010-parsons-lect09

26

e All the remaining nodes will get value 2, except S and & since
their value is fixed by §

2
N

Kop)

j9p
o

S
22

W
I\33(./)

S
12

n
92

® Each successive update will increase the value of nodes whose
value does not reflect their distance from the goal.

cisc3410-fall2010-parsons-lect09

27

e Eventually we end up with this:

N
N

o2

D
o

W
I\(;C/)

2
2

e [f you don’t see why, go back and run through all the updates.

cisc3410-fall2010-parsons-lect09

28

® The approach doesn’t do much for the agent the first time — it is
just path cost search.

® However, subsequent searches “zoom in” on the right solution
faster and faster.

e This happens as the hr(n) values propagate back from the goal.

® (All of this assumes there are few enough values that they can be
stored in a table.)

e Each run propagates the true cost of getting to the goal further
back through the search.

® We can tell that learning is complete by looking at whether
values change — if no value changes after another iteration, then
the values are correct.

cisc3410-fall2010-parsons-lect09 29

e Eventually, the minimal cost path can just be read off the tree
and whatever the state the agent is in, it knows what to do.

e It makes its choice by
a = argming, [N(RESULT(N;, @)) + ¢(nj, RESULT(N;, a))]

where, as before, RESULT(N;, @) is the state reached from n; after
carrying out a.

* In other words, the agent looks at all the states it can get to from
its current state, computes the sum of the heuristic value of each
of those states and cost of getting to that state, and then picks the
action which minimizes the result.

® When it has a correct value for each state, this procedure will
take it straight to the goal.

cisc3410-fall2010-parsons-lect09 30

e Even when the agent doesn’t have the correct value for each
state, it can still use it to find the goal.

e It just uses the value as a heuristic in A* search.

e Since the value always underestimates the distance to the goal,
the hueristic is admissable.

e However, the search will typically take longer to find the goal
than when the learning is complete.

cisc3410-fall2010-parsons-lect09 31

Learning without a model of action

® The search we described above is off-line.

— The search would typically be run before the agent does
anything.
— The final values are then used to act.

e [f the agent is a robot, this would all happen before the robot
moved at all.

® An alternative is to do the learning online.

— The agent to actually carries out the actions to see what
happens.

cisc3410-fall2010-parsons-lect09

32

e This is rather similar to the way in which we learn how to do
unfamiliar things.

® In the case of the robot it could move through the grid randomly
at first, working out over a number of runs what the outcomes of
actions were, and which were most useful at which point.

* To do this, the agent will have to build a model of the state space
in its "head” as it moves.

cisc3410-fall2010-parsons-lect09 33

e What we assume is that:

— The agent can distinguish the states it visits (and name them).
— The agent knows how much actions cost once it has taken
them.
® The process starts at the start state .

® The agent then takes an action (maybe at random), and moves to
another state. And repeats. So for our previous state space we
might have:

*—F—P

A
4

_>
cisc3410-fall2010-parsons-lect09 34

W

® As the agent visits each state, it names it and updates the
heuristic value of this state as:

h(ni) := [h(ry) + ¢,)]

where N is the node in which an action is taken, n; is the node the
action takes the agent to, and c(n;, ny) is the cost of the action.

e h(n) is zero if the node hasn’t been reached before.

® As before, the estimated minimum cost path to the goal is built
up over repeated runs.

cisc3410-fall2010-parsons-lect09 35

e | et’s look at how this works for the run:

W
Y

cisc3410-fall2010-parsons-lect09

36

e After the first move, the agent knows that executing up in So
takes it to §,.

(st
o
sV

W

S
‘0

Sol

e And having made the move and found that h(S,) = 0 (since it is a

new state) the h(-) value of S,. Can be updated.

cisc3410-fall2010-parsons-lect09

37

® The same expansion will take place, along the path until the
robot gets to the goal state.

S, |S. |[S
21 31 51 QO
)
S S |S
11% 1| 1|
SO
1

® Note that the tree is different from in the previous example.

cisc3410-fall2010-parsons-lect09

38

e [f the robot keeps executing the same path, over time it will build
up a set of values similar to those in the offline case:

S |S |S
25 34 53 go
]
S S |S
gl | Y|,
SO
7

® (Imagine it gets teleported back to the start when it reaches the
goal)

cisc3410-fall2010-parsons-lect09 39

e [f the robot executes an action that isn’t on the path, it will fill in
more of the search tree:

N
o

=

o

fﬁ

//
N7

N

-

® This will then change the values of other nodes in the search
graph (though all the changes may not be propagated for some
time, depending on how the robot chooses to update the graph).

cisc3410-fall2010-parsons-lect09 40

® As before the agent can use the partially learnt value to decide
the best action.

® Whenever the agent has to choose an action g, it can choose
using:
a = argming, [N(RESULT(N;, @)) + ¢(nj, RESULT(N;, a))]

® Assigning a high value to the results of actions that have not
been tried will cause the robot to exploit paths that it knows.

® Assigning a low value to the results of actions that have not been
tried will cause the robot to explore paths that it does not know.

e Classic example of the trade-off between exploitation and
exploration in learning.

¢ Allowing some randomness in the choice of actions is one way
to balance this.

cisc3410-fall2010-parsons-lect09 41

® The big difference with the previous case is that the agent
combines actions and establishing the value.

® So, over time, it learns the best thing to do by trying out actions.

cisc3410-fall2010-parsons-lect09

42

Planning in non-deterministic domains

® The major issue with STRIPS, POP and even HTNss is that
actions are not deterministic.

® Assoon as you start executing a plan, actions may not do what
you want then to do.

e To provide a full solution we need to reason about uncertainty
— Will do that in a few weeks after we look at using probability.

® In the meantime we’ll look at some other approaches.

cisc3410-fall2010-parsons-lect09 43

Partial solutions

e Conformant/sensorless planning

— Devise a plan that works from any state
— May well not exist

¢ Conditional planning
— Subplan for each contingency
® Monitoring /replanning

— Check progress during execution
— Replan when necessary

® Probably would need a combination of all of these.

cisc3410-fall2010-parsons-lect09

44

Sensorless planning

® Remember the vaccum world:

R | B8R 3R

S

LCE@% |

cisc3410-fall2010-parsons-lect09

=)

%R
(AL

=)

45

e What if we had no sensors?
e Wouldn’t be able to distinguish states

e Have to think in terms of “belief states”

cisc3410-fall2010-parsons-lect09

46

47

1
I

= [~

1
| R
I

d
I
I
|
|

-~

Fla] [«

le] [=9

=] [«

i

r——

I
L |
I
I

R

=

L

1

cisc3410-fall2010-parsons-lect09

® Here a plan like:
Right
Suck up dirt
Left
Suck up dirt

will work.

e Of course, it may involve additional actions.

cisc3410-fall2010-parsons-lect09

48

Conditional planning

® Conditional plans check (any consequence of KB +) percept

..., if C then Plan, else Plang, . . .|

e Execution: check C against current KB, execute “then” or “else”
® Need some plan for every possible percept

® The learning we looked at before is one way to provide this.

cisc3410-fall2010-parsons-lect09 49

® Double Murphy: sucking or arriving may dirty a clean square

8 =)
Left Suck
e 3[4 o |4 o |4
GOAL Righ Suck LOOP Left Suck
P e I P - 5|8 g | 1|50 8| |4
GOAL LOOP

cisc3410-fall2010-parsons-lect09

50

Execution Monitoring

e “Failure” = preconditions of remaining plan not met
® For a partial order plan, this means:

— All preconditions of remaining steps not achieved by
remaining steps
— All causal links crossing current time point

® See example on next slide

cisc3410-fall2010-parsons-lect09

51

Start

At(Home)

GOo(HWS)

At(HWS) Sells(HWS,Drill)

Buy(Drill)

At(HWS)

Go(SM)

At(SM) Sells(SM,Milk) | At(SM) Sells(SM,Ban.)

Buy(Milk)

Buy(Ban.)

AY(SM)

Go(Home)

v

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

cisc3410-fall2010-parsons-lect09

At(SM)
Have(Drill)
Sells(SM,Ban.)
Sells(SM,Milk)

52

® On failure, resume POP to achieve open conditions from current
state

¢ [PEM (Integrated Planning, Execution, and Monitoring):

— Keep updating Startto match current state
— Links from actions replaced by links from Startwhen done

cisc3410-fall2010-parsons-lect09 53

Color(Chair,

START

Blue) l~Hav

e(Red)

Get(Red)

Emergent behavior

PRECONDITIONS

__g________ﬁa_veTREdT___'
Have(Red)

Paint(Red)

CoIor(C{air,Red)

FINISH

cisc3410-fall2010-parsons-lect09

FAILURE RESPONSE

Fetch more red

54

Color(Chair,

START

Blue) l—-Hav

e(Red)

Get(Red)

Have&ied)

Paint(Red)

PRECONDITIONS

Color(Chair,Red)

 E—

Color(Chair,Red)

FINISH

cisc3410-fall2010-parsons-lect09

FAILURE RESPONSE

Extra coat of paint

55

® “Loop until success” behavior emerges from interaction between
monitor /replan agent design and uncooperative environment.

cisc3410-fall2010-parsons-lect09 56

Summary

® This lecture looked at some additional ideas about planning.

® We first looked at making the simple planning techniques from
the last lecture more scaleable.

— Abstraction
— Hierarchical planning.

® We then looked at using learning to help an agent plan.

¢ Finally we started looking at the problems caused by
non-deterministic action.

e However, the approaches we looked at were limited, and we will
need to come back to this topic once we have looked at
approaches for handling uncertainty.

cisc3410-fall2010-parsons-lect09 57

