MACHINE LEARNING

Learning agents Performance standard Critic Sensors Learning Learning Learning Learning Performance element learning goals Problem generator Agent cisc3410-fall2010-parsons-lect12a

Overview

- Most of the time we can't program our agents to do everything right to begin with.
- We don't have enough information about the environment.
- So we get them to *learn* what to do.
- Different forms of learning:
 - Inductive learning; and
 - Reinforcement learning.

cisc3410-fall2010-parsons-lect12a

2

- Design of learning element is dictated by
 - what type of performance element is used
 - which functional component is to be learned
 - how that functional component is represented
 - what kind of feedback is available
- Supervised learning: correct answers for each instance.
- $\bullet \ \textit{Reinforcement learning} : occasional \ rewards.$

cisc3410-fall2010-parsons-lect12a

• Example scenarios:

Performance element	Component	Representation	Feedback
Alpha-beta search	Eval. fn.	Weighted linear function	Win/loss
Logical agent	Transition model	Successor-state axioms	Outcome
Utility-based agent	Transition model	Dynamic Bayes net	Outcome
Simple reflex agent	Percept-action fn	Neural net	Correct action

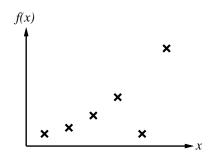
• Today we'll look at *inductive learning* of decision trees and *reinforcement learning*.

cisc3410-fall2010-parsons-lect12a

5

Inductive learning method

 Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
 E.g., curve fitting:



cisc3410-fall2010-parsons-lect12a

Inductive learning

- Simplest form: learn a function from examples (tabula rasa)
- *f* is the *target function*
- An *example* is a pair x, f(x):

$$\begin{array}{c|c} O & O & X \\ \hline X & \\ \hline X & \\ \end{array}, +1$$

• Problem: find a(n) *hypothesis h* such that

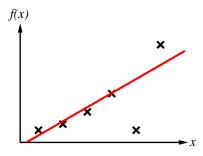
$$h \approx f$$

given a *training set* of examples

cisc3410-fall2010-parsons-lect12a

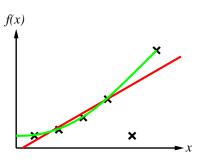
.

 Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
 E.g., curve fitting:



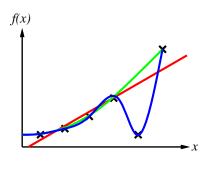
cisc3410-fall2010-parsons-lect12a

 Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
 E.g., curve fitting:



cisc3410-fall2010-parsons-lect12a

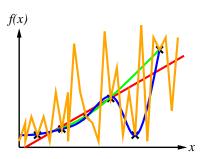
 Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
 E.g., curve fitting:



cisc3410-fall2010-parsons-lect12a

10

• Construct/adjust *h* to agree with *f* on training set (*h* is *consistent* if it agrees with *f* on all examples) E.g., curve fitting:



cisc3410-fall2010-parsons-lect12a

• Ockham's razor: maximize a combination of consistency and simplicity

cisc3410-fall2010-parsons-lect12a

11

Attribute-based representations

Example	Example Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

cisc3410-fall2010-parsons-lect12a

• Examples described by *attribute values* (Boolean, discrete, continuous, etc.)

• *Classification* of examples is *positive* (T) or *negative* (F)

cisc3410-fall2010-parsons-lect12a

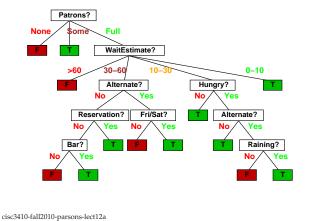
13

15

14

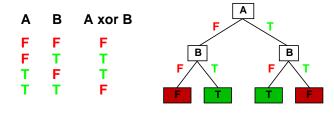
Decision trees

• Here is the "true" tree for deciding whether to wait:



• Decision trees can express any function of the input attributes.

ullet For Boolean functions, truth table row o path to leaf:



cisc3410-fall2010-parsons-lect12a

Trivially, ∃ a consistent decision tree for any training set with one path to leaf for each example.
unless f nondeterministic in x
This trivial tree probably won't generalize to new examples
Prefer to find more *compact* decision trees

cisc3410-fall2010-parsons-lect12a

• How many distinct decision trees with *n* Boolean attributes? = number of Boolean functions

Hypothesis spaces

• How many distinct decision trees with *n* Boolean attributes?

cisc3410-fall2010-parsons-lect12a

- How many distinct decision trees with *n* Boolean attributes?
 - = number of Boolean functions
 - = number of distinct truth tables with 2^n rows

cisc3410-fall2010-parsons-lect12a

cisc3410-fall2010-parsons-lect12a

- How many distinct decision trees with *n* Boolean attributes?
 - = number of Boolean functions
 - = number of distinct truth tables with 2^n rows = 2^{2^n}

cisc3410-fall2010-parsons-lect12a

- How many distinct decision trees with *n* Boolean attributes?
 - = number of Boolean functions
 - = number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes means 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses ($Hungry \land \neg Rain$)?

- How many distinct decision trees with *n* Boolean attributes?
 - = number of Boolean functions
 - = number of distinct truth tables with 2^n rows = 2^{2^n}
- 6 Boolean attributes means 18,446,744,073,709,551,616 trees

cisc3410-fall2010-parsons-lect12a

- How many distinct decision trees with *n* Boolean attributes?
 - = number of Boolean functions
 - = number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes means 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses ($Hungry \land \neg Rain$)?
- Each attribute can be in (positive), in (negative), or out ⇒ 3ⁿ distinct conjunctive hypotheses
- More expressive hypothesis space
 - increases chance that target function can be expressed
 - increases number of hypotheses consistent with training set
 ⇒ may get worse predictions

cisc3410-fall2010-parsons-lect12a 23

cisc3410-fall2010-parsons-lect12a

Decision tree learning

- Aim: find a small tree consistent with the training examples.
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree.

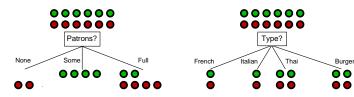
cisc3410-fall2010-parsons-lect12a

cisc3410-fall2010-parsons-lect12a

25

Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative".



 Patrons? is a better choice—gives information about the classification

classification

Decision tree learning

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all *examples* have the same classification **then return** the classification

else if *attributes* is empty **then return** MODE(*examples*) **else**

 $best \leftarrow Choose-Attribute(attributes, examples)$

 $tree \leftarrow$ a new decision tree with root test best

for each value v_i of best **do**

 $examples_i \leftarrow \{elements of examples with best = v_i\}$

 $subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))$

add a branch to tree with label v_i and subtree subtree return tree

cisc3410-fall2010-parsons-lect12a

26

Information

- Information answers questions.
- The more clueless I am about the answer initially, the more information is contained in the answer.
- Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)
- Information in an answer when prior is $\langle P_1, \dots, P_n \rangle$ is

$$H(\langle P_1,\ldots,P_n\rangle)=\sum_{i=1}^n-P_i\log_2P_i$$

(also called *entropy* of the prior)

27 cisc3410-fall2010-parsons-lect12a

• Suppose we have *p* positive and *n* negative examples at the root: $H(\langle p/(p+n), n/(p+n)\rangle)$

bits needed to classify a new example.

- For 12 restaurant examples, p = n = 6 so we need 1 bit
- An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification

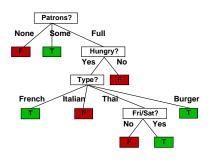
cisc3410-fall2010-parsons-lect12a

29

31

Back to the example

• Decision tree learned from the 12 examples:



• Substantially simpler than "true" tree—a more complex hypothesis isn't justified by small amount of data

• Let E_i have p_i positive and n_i negative examples.

$$H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$$

bits needed to classify a new example

• Expected number of bits per example over all branches is

$$\sum_{i} \frac{p_{i} + n_{i}}{p + n} H(\langle p_{i} / (p_{i} + n_{i}), n_{i} / (p_{i} + n_{i}) \rangle)$$

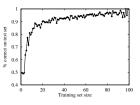
- For *Patrons*?, this is 0.459 bits.
- For *Type* this is (still) 1 bit
- Choose the attribute that minimizes the remaining information needed

cisc3410-fall2010-parsons-lect12a

30

Performance measurement

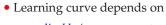
- How do we know that $h \approx f$?
 - 1. Use theorems of computational/statistical learning theory
 - 2. Try *h* on a new *test set* of examples (use *same distribution over example space* as training set)
- Learning curve = % correct on test set as a function of training set size



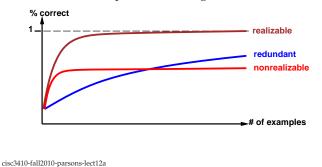
cisc3410-fall2010-parsons-lect12a

32

cisc3410-fall2010-parsons-lect12a



- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class
- redundant expressiveness (e.g., loads of irrelevant attributes)



Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation
- For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples
- Decision tree learning using information gain
- Learning performance = prediction accuracy measured on test set

cisc3410-fall2010-parsons-lect12a

33