
REINFORCEMENT LEARNING

Overview

• Last lecture looked at inductive learning

– How to learn rules given examples of decisions.

• Supervised learning = examples of correct behavior.

• Often we don’t have such examples.

• Just know when we succeed or fail.

• This is the domain of reinforcement learning (RL).

cisc3410-fall2010-parsons-lect12b 2

Making complex decisions

• Before we look at RL, we need to look at sequential decision
making.

• (We have seen this before).

���
���
���

���
���
���

G

S

• To get from the start point (S) to the goal (G), an agent needs to
repeatedly make a decision about what to do.

cisc3410-fall2010-parsons-lect12b 3

• Here we exchange the notion of a goal for the notion of a reward
in specific states:

���
���
���

���
���
���

S

+1

−1

• And the action model gets more complex. Now actions are
non-deterministic.

cisc3410-fall2010-parsons-lect12b 4



• If the agent chooses to move in some direction, there is a
probability of 0.8 it will move that way.

0.8

0.1

0.1

• Probability of 0.2 it will move in the perpendicular direction.

• If the agent hits a wall, it doesn’t move.

cisc3410-fall2010-parsons-lect12b 5

• This is an approximation to how a robot moves.

•Why?

cisc3410-fall2010-parsons-lect12b 6

• If the agent goes {Up,Up,Right,Right,Right}

���
���
���
���

���
���
���
���

S

+1

−1

• It will get to the goal with probability 0.85 = 0.32768 doing what
it expects/hopes to do.

cisc3410-fall2010-parsons-lect12b 7

• It can also reach the goal going around the obstacle the other
way, with probability = 0.14 × 0.8.

• Total probability of reaching the goal is 0.32776.

cisc3410-fall2010-parsons-lect12b 8



• To complete the description, we have to give a reward to each
state.

• To give the agent an incentive to reach the goal quickly, we give
each non-terminal state a reward of −0.04.

• So if the goal is reached after 10 steps, the agent’s overall reward
is 0.6.

cisc3410-fall2010-parsons-lect12b 9

• This kind of problem is a Markov Decision Process (MDP).

•We have:

– a set of states S.

– an initial state s0.

– a set ACTIONS(s) of actions in each state.

– A transition model Pr(s′|s, a); and

– A reward function R(s).

•What does a solution look like?

cisc3410-fall2010-parsons-lect12b 10

• A plan — a sequence of actions — is not much help.

– Isn’t guaranteed to find the goal.

• Better is a policy π, which tells us which action π(s) to do in every
state.

• Then the non-determinism doesn’t matter.

– However badly we do as a result of an action, we will know
what to do.

cisc3410-fall2010-parsons-lect12b 11

• Because of the non-deteminism, a policy will give us different
sequences of actions different times it is run.

• To tell how good a policy is, we can compute the expected value.

•We all remember how to do that from the other week, right?

• The optimal policy π∗ is the one that gives the highest expected
utility.

– On average it will give the best reward.

• Given π
∗ an agent doesn’t have to think — it just does the right

action for the state it is in.

cisc3410-fall2010-parsons-lect12b 12



• The optimum policy is then:

���
���
���

���
���
���

+1

−1

• But this is specific to the value of the reward R(s) for
non-terminal states.

cisc3410-fall2010-parsons-lect12b 13

• How do we find the best policy?

• Turns out that there is a neat way to do this, by first computing
the utility of each state.

•We compute this using the Bellman equation

U(s) = R(s) + γ max
a∈A(s)

∑

s′
Pr(s′|s, a)U(s′)

• Does this remind you of anything?

• (γ is a discount factor).

cisc3410-fall2010-parsons-lect12b 14

• Not this Bellman

(Mervyn Peake’s illustrations to “The Hunting of the Snark”).

cisc3410-fall2010-parsons-lect12b 15

• In an MDP wth n states, we will have n Bellman equations.

• Hard to solvethese simultaneously because of the max operation

– Makes them non-linear

• Instead use an iterative approach

– value iteration.

• Start with arbitrary values for utilities (say 0) and then update
with:

Ui+1 ← R(s) + γ max
a∈A(s)

∑

s′
Pr(s′|s, a)Ui(s

′)

• Repeat until the value stabilises.

cisc3410-fall2010-parsons-lect12b 16



Partial observability

• For all their complexity, MDPs are not an accurate model of the
world.

– Assume accessibility/observability

• To deal with partial observability we have the Partially observable
Markov decision process (POMDP).

•We don’t know which state we are in, but we know what
probability we have to being in every state.

• That is all we will say on the subject.

cisc3410-fall2010-parsons-lect12b 17

Reinforcement learning

• Ok, now we have the notion of an MDP, imagine we don’t know
what the model is.

•We don’t know R(s)

•We don’t know Pr(s′|s, a)

• But it is simple to learn them — the agent just moves around the
environment.

• Since it knows what state s′ it gets to when it executes a in s, it
can count how often particular transitions occur to estimate:

Pr(s′|s, a)

as the proportion of times executing a in s takes the agent to s′.

• Similarly the agent can see what reward it gets in s to give it R(s).

cisc3410-fall2010-parsons-lect12b 18

• If the agent wanders randomly for long enough, it will learn the
probability and reward values.

• (How would it know what “long enough” was?)

•With these values it can apply the Bellman equation(s) and start
doing the right thing.

cisc3410-fall2010-parsons-lect12b 19

• The agent can also be smarter, and use the values as it learns
them.

• At each step it can solve the Bellman equation(s) to compute the
best action given what it knows.

• This means it can learn quicker, but also it may lead to
sub-optimal performance.

cisc3410-fall2010-parsons-lect12b 20



Summary

• This lecture looked at the basics of reinforcement learning

– Learning when you only have periodic rewards to guide you.

• The underlying theory of reinforcement learning is that of MDPs.

cisc3410-fall2010-parsons-lect12b 21


