REINFORCEMENT LEARNING




Overview

e Last lecture looked at inductive learning

— How to learn rules given examples of decisions.
® Supervised learning = examples of correct behavior.
e Often we don’t have such examples.
¢ Just know when we succeed or fail.

e This is the domain of reinforcement learning (RL).

cisc3410-fall2010-parsons-lect12b




Making complex decisions

e Before we look at RL, we need to look at sequential decision
making.

® (We have seen this before).

G

W

S

® To get from the start point (S) to the goal (G), an agent needs to
repeatedly make a decision about what to do.

cisc3410-fall2010-parsons-lect12b




e Here we exchange the notion of a goal for the notion of a reward
in specific states:

+1
-1

W

S

® And the action model gets more complex. Now actions are
non-deterministic.

cisc3410-fall2010-parsons-lect12b 4




e If the agent chooses to move in some direction, there is a
probability of 0.8 it will move that way.

T 0.1
-

-
0.8 *

o

® Probability of 0.2 it will move in the perpendicular direction.

e If the agent hits a wall, it doesn’t move.

cisc3410-fall2010-parsons-lect12b




e This is an approximation to how a robot moves.

cisc3410-fall2010-parsons-lect12b




e If the agent goes {Up, Up, Right, Right, Right }

W

S

e It will get to the goal with probability 0.8° = 0.32768 doing what
it expects/hopes to do.

cisc3410-fall2010-parsons-lect12b




e [t can also reach the goal going around the obstacle the other
way, with probability = 0.1* x 0.8.

e Total probability of reaching the goal is 0.32776.

cisc3410-fall2010-parsons-lect12b




® To complete the description, we have to give a reward to each
state.

® To give the agent an incentive to reach the goal quickly, we give
each non-terminal state a reward of —0.04.

e So if the goal is reached after 10 steps, the agent’s overall reward
is 0.0.

cisc3410-fall2010-parsons-lect12b 9




® This kind of problem is a Markov Decision Process (MDP).
e We have:

— a set of states S

— an initial state 5.

— a set ACTIONS(S) of actions in each state.
— A transition model Pr(S|s, a); and

— A reward function R(S).

e What does a solution look like?

cisc3410-fall2010-parsons-lect12b

10




® A plan — a sequence of actions — is not much help.

— Isn’t guaranteed to find the goal.

e Better is a policy 7, which tells us which action 7(S) to do in every

state.
e Then the non-determinism doesn’t matter.

— However badly we do as a result of an action, we will know
what to do.

cisc3410-fall2010-parsons-lect12b

11




® Because of the non-deteminism, a policy will give us different
sequences of actions different times it is run.

® To tell how good a policy is, we can compute the expected value.
® We all remember how to do that from the other week, right?

® The optimal policy * is the one that gives the highest expected
utility.

— On average it will give the best reward.

¢ Given 7" an agent doesn’t have to think — it just does the right
action for the state it is in.

cisc3410-fall2010-parsons-lect12b 12




® The optimum policy is then:

/R

e But this is specific to the value of the reward R(s) for
non-terminal states.

cisc3410-fall2010-parsons-lect12b

13




e How do we find the best policy?

® Turns out that there is a neat way to do this, by first computing
the utility of each state.

e We compute this using the Bellman equation

U(s) = R(s) + varggmé)%Pr(sﬂs, a)u(s)

® Does this remind you of anything?

® (v is a discount factor).

cisc3410-fall2010-parsons-lect12b

14




e Not this Bellman

i e s 4‘,- r?
g &% |
:'_.?' %

(Mervyn Peake’s illustrations to “The Hunting of the Snark”).

cisc3410-fall2010-parsons-lect12b

15




¢ In an MDP wth n states, we will have n Bellman equations.

® Hard to solvethese simultaneously because of the max operation
— Makes them non-linear

® Instead use an iterative approach
— value iteration.

e Start with arbitrary values for utilities (say 0) and then update
with:

Ui+ R(S) + ’Vgél'gé) %/: Pr(S’]S, a)Ui(s’)

® Repeat until the value stabilises.

cisc3410-fall2010-parsons-lect12b 16




Partial observability

e For all their complexity, MDPs are not an accurate model of the
world.

— Assume accessibility /observability

® To deal with partial observability we have the Partially observable
Markov decision process (POMDP).

e We don’t know which state we are in, but we know what
probability we have to being in every state.

® That is all we will say on the subject.

cisc3410-fall2010-parsons-lect12b 17




Reinforcement learning

® Ok, now we have the notion of an MDP, imagine we don’t know
what the model is.

e We don’t know R(S)
e We don’t know Pr(S|s, a)

® But it is simple to learn them — the agent just moves around the
environment.

e Since it knows what state S’ it gets to when it executes ain s, it
can count how often particular transitions occur to estimate:

Pr(ss, a)
as the proportion of times executing a in Stakes the agent to S.

e Similarly the agent can see what reward it gets in Sto give it R(S).

cisc3410-fall2010-parsons-lect12b 18




e If the agent wanders randomly for long enough, it will learn the
probability and reward values.

* (How would it know what “long enough” was?)

e With these values it can apply the Bellman equation(s) and start
doing the right thing.

cisc3410-fall2010-parsons-lect12b 19




® The agent can also be smarter, and use the values as it learns
them.

® At each step it can solve the Bellman equation(s) to compute the

best action given what it knows.

® This means it can learn quicker, but also it may lead to
sub-optimal performance.

cisc3410-fall2010-parsons-lect12b

20




Summary

® This lecture looked at the basics of reinforcement learning

— Learning when you only have periodic rewards to guide you.

® The underlying theory of reinforcement learning is that of MDPs.

cisc3410-fall2010-parsons-lect12b

21




