
SEARCH

Overview

Aims of the this lecture:

• Introduce problem solving;

• Introduce goal formulation;

• Show how problems can be stated as state space search;

• Show the importance and role of abstraction;

• Introduce undirected and heuristic search:

– breadth first, depth first search;

– best first search, A*

• Define main performance measures for search.

cisc3410-fall2012-parsons-lect02 2

Problem Solving Agents

• Lecture 1 introduced rational agents but didn’t say much about
how we might construct them.

• Today we make a start on understanding how to do this.

• Consider agents as problem solvers:

Systems that have goals and find sequences of actions that achieve
these goals.

cisc3410-fall2012-parsons-lect02 3

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an
action

static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←UPDATE-STATE(state, percept)
if seq is empty then

goal← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state, goal)
seq← SEARCH(problem)

action←RECOMMENDATION(seq, state)
seq←REMAINDER(seq, state)
return action

cisc3410-fall2012-parsons-lect02 4

• Key difficulties:

– FORMULATE-GOAL(...)

– FORMULATE-PROBLEM(...)

– SEARCH(...)—

• It isn’t easy to see how to tackle any of these.

• Here we will concentrate mainly on search but first we’ll say a
bit about goal formulation and problem formulation.

cisc3410-fall2012-parsons-lect02 5

Goal Formulation

•Where do an agent’s goals come from?

– Agent is a program with a specification.

– Specification is to maximise performance measure.

– Should adopt goal if achievement of that goal will maximise
this measure.

• But what does that mean in practice?

cisc3410-fall2012-parsons-lect02 6

• As the textbook suggests, let’s imagine we (or any other agent)
are in Arad, Romania:

cisc3410-fall2012-parsons-lect02 7

• On a given day, we might do a number of things:

– get a suntan;

– go sightseeing;

– improve our spoken Romanian;

– enjoy the nightlife;

– avoid a hangover; and so on

• But if we have a non-refundable ticket for a flight from Bucharest
the next day, then we can eliminate most of these options, and
adopt the goal of getting to Bucharest.

• Anything else will clearly have a lower value.

cisc3410-fall2012-parsons-lect02 8

• Goals provide a focus and filter for decision-making:

– focus: need to consider how to achieve them;

– filter: need not consider actions that are incompatible with
goals.

• Both of these help computationally.

cisc3410-fall2012-parsons-lect02 9

Problem Formulation

•What is a problem?

• Formal definition is that a problem contains 5 components:

– Initial state;

– Actions;

– Transition model;

– Goal test; and

– Path cost.

• Let’s look at each of these in detail.

cisc3410-fall2012-parsons-lect02 10

Initial state

• The state that the agent starts in.

• In the Romania example the initial state might be described as:

In(Arad)

•We could obviously include a lot more detail:

In(Arad)
Temperature(high)

Suntan(acceptable)
Romanian(rudimentary)

and finding the corrected level of abstraction is important.

• Too much detail and (as we will see) the problem can be
intractable.

cisc3410-fall2012-parsons-lect02 11

Actions

• The actions that the agent can perform.

• These tend to be dependent on what state the agent is in.

• Given a particular state s, ACTIONS(s) is the set of actions that
are applicable.

• In the Romania example, in the state In(Arad), the relevant
actions are:

{Go(Sibiu),Go(Timosoara),Go(Zerind)}

• Again, abstraction is important.

cisc3410-fall2012-parsons-lect02 12

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

cisc3410-fall2012-parsons-lect02 13

Transition model

• The transition model describes what each action does.

• Formally we have a function RESULT(s, a)which defines the state
the agent gets to when it executes action a in state s.

We will call the state we get to a successor state.

• In the Romania example:

RESULT(In(Arad),Go(Zerind)) = In(Zerind)

• For now we will deal with deterministic environments, so that a
state only has a single successor.

cisc3410-fall2012-parsons-lect02 14

• The combination of initial state, actions, and transitions define
what we call the state space.

• This is the set of all states that we can get to from the intitial state.

• The state space can be pictured as a directed graph in which
nodes are states and links are actions.

• In the Romania example, the map can be thought of as a picture
of the state space.

• A path in a state space is a sequence of actions and states.

• A path through the state space from initial state to goal state is a
plan to get to the goal.

cisc3410-fall2012-parsons-lect02 15

Goal test

• Determines whether a given state is the goal state.

• In the Romania example:

{In(Bucharest)}

is the goal.

• So a possible goal test would be:

Equal(state, In(Bucharest))

cisc3410-fall2012-parsons-lect02 16

Path cost

• Function that assigns a numeric cost to each path.

•What we use as a path cost depends on the problem we are
solving.

• In the Romania example it makes sense to use distance as a cost
function since the agent is in a hurry.

• A more leisurely agent might want to use the price of taking the
bus on each leg as the cost function.

•We will often assume that the path cost can be computed as the
sum of the costs along a path.

• The step cost of taking action a in state s to reach state s′ is written
as c(s, a, s′).

cisc3410-fall2012-parsons-lect02 17

Problem

• Together these elements define a problem.

• A solution is an action sequence (plan) that leads from the initial
state to the goal.

• The quality of a solution is measured by the path cost.

• The optimal solution is the one with the lowest path cost.

• Since we can define the path cost in different ways:

– Distance

– Time

– Monetary cost

– . . .

there is no loss of generality in equating optimal with the lowest
path cost.

cisc3410-fall2012-parsons-lect02 18

Example problem: Vacuum world

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

cisc3410-fall2012-parsons-lect02 19

• States: There are two locations, each of which may contain dirt,
and the agent can be in either.

That leads to 8 possible states.

We might consider any of these to be the initial state.

• Actions: Left, Right, Suck.

• Transition model: The actions work as their names suggest,
except that Left and Right have no effect in (respectively) the
leftmost and rightmost positions.

Suck has no effect in a clean square.

• Goal test: Checks if both squares are clean.

• Path cost: Each step costs 1.

cisc3410-fall2012-parsons-lect02 20

Example problem: 8 puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

cisc3410-fall2012-parsons-lect02 21

• States: Each state specifies the location of each tile and the blank.
Any of these can be the initial state.

• Actions: Simplest way to specify actions is to say what happens
to the blank — Left, Right, Up and Down.

Not all of these will be applicable in all locations of the blank.

• Transition model: Gives the resulting state of each action. For
example Left in the initial state above switches the 5 and the
blank.

• Goal test: Checks if the goal configuration has been reached.

• Path cost: Each step costs 1.

cisc3410-fall2012-parsons-lect02 22

Problem Solving as Search

• As with the Romania example, we can think of the state-space of
a problem as a graph.

• Systematically generate a search tree

• The tree is built by taking the initial state and identifying some
states that can be obtained by applying a single operator.

• These new states become the children of the initial state in the
tree.

• These new states are then examined to see if they are the goal
state.

• If not, the process is repeated on the new states.

•We can formalise this description by giving an algorithm for it.

cisc3410-fall2012-parsons-lect02 23

function TREE-SEARCH(problem, strategy) returns a solution, or
failure

initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return

the corresponding solution
else expand the node and add the resulting nodes to

the search tree
end

• Note that we call “candidates for expansion” both fringe and
frontier.

cisc3410-fall2012-parsons-lect02 24

• Initial state

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

cisc3410-fall2012-parsons-lect02 25

• Successor states of the initial state.

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

cisc3410-fall2012-parsons-lect02 26

• Successors of the sucessors

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

• Note how Arad reappears

cisc3410-fall2012-parsons-lect02 27

• Note the difference between state space and search tree.

• State space is every possible state and the relationships between
them.

– It is static.

• Search tree the set of states the agent has looked at (is looking at)
and some of the relationships between them.

– It is dynamic.

• Now, about those states that pop up more than once.

cisc3410-fall2012-parsons-lect02 28

function GRAPH-SEARCH(problem, fringe) returns a solution, or
failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe← INSERTALL(EXPAND(node, problem), fringe)

end

cisc3410-fall2012-parsons-lect02 29

Search strategies

• Question: How to pick states for expansion?

• A range of possibilities:

– Breadth-first

– Depth-first

– Iterative deepening

– Best-first

– A*

– D*, D*-Lite, . . .

cisc3410-fall2012-parsons-lect02 30

Breadth First Search

• Start by expanding initial state — gives tree of depth 1.

• Then expand all nodes that resulted from previous step — gives
tree of depth 2.

• Then expand all nodes that resulted from previous step, and so
on.

• Expand nodes at depth n before level n + 1.

cisc3410-fall2012-parsons-lect02 31

function BREADTH-FIRST-SEARCH(problem, fringe) returns a
solution, or failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe←ADDTOBACK(EXPAND(node, problem), fringe)

end

cisc3410-fall2012-parsons-lect02 32

• Add the node representing the initial state into the fringe.

Arad

cisc3410-fall2012-parsons-lect02 33

• Remove the first node in the fringe and add its children

• The queue is FIFO.

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 34

• Remove the first node in the fringe and add its children — they
are added to the back of the queue.

Arad Oradea

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 35

• Repeat twice more.

Arad Oradea Rimnicu
 VilceaFagaras Arad LugojArad Oradea

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 36

• Advantage: guaranteed to reach a solution if one exists.

• If all solutions occur at depth n, then this is a good approach.

• Disadvantage: time taken to reach solution!

• Let b be branching factor — average number of operations that
may be performed from any level.

• If solution occurs at depth d, then we will look at

1 + b + b2 + · · · + bd

nodes before reaching solution — exponential.

cisc3410-fall2012-parsons-lect02 37

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

cisc3410-fall2012-parsons-lect02 38

• Time for breadth first search, b = 10, 1 million nodes per second,
each node needs 1000 bytes of storage.

Depth Nodes Time Memory
2 110 .11 msec 107 kilobytes
4 11,110 11 msecs 10.6 megabytes
6 106 1.1 secs 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 1014 3.5 years 99 petabytes
20 1020 350 years 10 exabytes

• Combinatorial explosion!

cisc3410-fall2012-parsons-lect02 39

Performance Measures for Search

• Completeness:

Is the search technique guaranteed to find a solution if one exists?

• Time complexity:

How many computations are required to find solution?

• Space complexity:

How much memory space is required?

• Optimality:

How good is a solution going to be w.r.t. the path cost function.

cisc3410-fall2012-parsons-lect02 40

• Time and space complexity are measured in terms of:

– b —maximum branching factor of the search tree.

– d —depth of the least-cost solution.

– m —maximum depth of the state space (may be∞)

cisc3410-fall2012-parsons-lect02 41

• How does breadth-first search measure up?

cisc3410-fall2012-parsons-lect02 42

Uniform-cost search

• Expand least-cost unexpanded node.

•We think of this as having an evaluation function:

g(n)

which returns the path cost to a node n.

• fringe = queue ordered by evaluation function, lowest first

• Equivalent to breadth-first if step costs all equal

• Complete and optimal.

• Time and space complexity are as bad as for breadth-first search.

cisc3410-fall2012-parsons-lect02 43

function UNIFORM-COST-SEARCH(problem, fringe) returns a
solution, or failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe← INSERTALL(EXPAND(node, problem), fringe)
fringe← SORTBYGVALUE(fringe)

end

cisc3410-fall2012-parsons-lect02 44

• Add the node representing the initial state into the fringe.

Arad

cisc3410-fall2012-parsons-lect02 45

• Remove the first node in the fringe and add its children

• The queue is ordered with the cheapest first.

Zerind Sibiu Timisoara

75 140 118

Arad

cisc3410-fall2012-parsons-lect02 46

• Remove the first node in the fringe and add its children — they
are added in priority order.

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad

cisc3410-fall2012-parsons-lect02 47

• Repeat.

Arad Lugoj

118 111

Arad Oradea

75 71

Zerind Sibiu Timisoara

75 140 118

Arad

•What will be the next node to be expanded?

cisc3410-fall2012-parsons-lect02 48

Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from 1st step, and expand it.

• Pick one of nodes resulting from 2nd step, and expand it, and so
on.

• Always expand deepest node — make fringe a LIFO queue.

• Follow one “branch” of search tree.

cisc3410-fall2012-parsons-lect02 49

function DEPTH-FIRST-SEARCH(problem, fringe) returns a
solution, or failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe←ADDTOFRONT(EXPAND(node, problem), fringe)

end

cisc3410-fall2012-parsons-lect02 50

• Depth-first search on the Romania example — we start with the
initial state in the frontier.

Arad

cisc3410-fall2012-parsons-lect02 51

• Now we delete that node, and add its children.

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 52

• Now pick a child and add its children

Arad Oradea

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 53

• and repeat.

Zerind Sibiu Timisoara

Arad Oradea

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 54

• Depth first search is not guaranteed to find a solution if one
exists.

• However, if it does find one, amount of time taken is much less
than breadth first search.

•Memory requirement is much less than breadth first search.

• Solution found is not guaranteed to be the best.

cisc3410-fall2012-parsons-lect02 55

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

cisc3410-fall2012-parsons-lect02 56

Algorithmic Improvements

• Are then any algorithmic improvements we can make to basic
search algorithms that will improve overall performance?

• Try to get:

– optimality and completeness

of breadth 1st search with:

– space efficiency

of depth 1st.

• Not too much to be done about time complexity :-(

cisc3410-fall2012-parsons-lect02 57

Depth-limited Search

• Depth first search has some desirable properties — space
complexity.

• But if wrong branch is expanded (with no solution on it), then it
won’t terminate.

• Idea: introduce a depth limit on branches to be expanded.

– Don’t expand a branch below this depth.

• Obviously this can be a source of incompleteness,

BUT knowledge of the problem can help to set a sensible limit.

cisc3410-fall2012-parsons-lect02 58

function DEPTH-LIMITED-SEARCH(problem, limit) returns
soln/fail/cutoff

RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),
problem, limit)

cisc3410-fall2012-parsons-lect02 59

function RECURSIVE-DLS(node, problem, limit) returns
soln/fail/cutoff

cutoff-occurred?← false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do

result←RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

cisc3410-fall2012-parsons-lect02 60

Iterative Deepening

• Unfortunately, if we choose a max depth for DLS such that
shortest solution is longer, DLS is not complete.

• Iterative deepening an ingenious complete version of it.

• Basic idea is:

– do DLS for depth 1; if solution found, return it;

– otherwise do DLS for depth n; if solution found, return it;

– otherwise, . . .

• So we repeat DLS for all depths until solution found.

cisc3410-fall2012-parsons-lect02 61

function ITERATIVE-DEEPENING-SEARCH(problem) returns a
solution

inputs: problem, a problem

for depth← 0 to∞ do
result←DEPTH-LIMITED-SEARCH(problem, depth)
if result 6= cutoff then return result

end

• Calls DLS as subroutine.

cisc3410-fall2012-parsons-lect02 62

• The search covers the whole state space down to the depth limit.

Depth bound = 1 Depth bound = 2 Depth bound = 3 Depth bound = 4

© 1998 Morgan Kaufman Publishers

• The order it searches the nodes changes for each depth limit.

cisc3410-fall2012-parsons-lect02 63

• Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we
need to regenerate the tree to depth d − 1.

• Isn’t this inefficient?

• Tradeoff time for memory.

• In general we might take a littlemore time, but we save a lot of
memory.

• Now for breadth-first search to level d:

Nbf = 1 + b + b2 + . . . bd

=
bd+1 − 1

b− 1

cisc3410-fall2012-parsons-lect02 64

• In contrast a complete depth-limited search to level j:

N j
df =

bj+1 − 1

b− 1

• (This is just a breadth-first search to depth j.)

• In the worst case, then we have to do this to depth d, so
expanding:

Nid =
d∑

j=0

bj+1 − 1

b− 1
...

=
bd+2 − 2b− bd + d + 1

(b− 1)2

cisc3410-fall2012-parsons-lect02 65

• For large d:

Nid

Nbf
=

b
b− 1

• So for high branching and relatively deep goals we do a small
amount more work.

• Example: Suppose b = 10 and d = 5.

Breadth first search would require examining 111, 111 nodes,
with memory requirement of 100, 000 nodes.

Iterative deepening for same problem: 123, 456 nodes to be
searched, with memory requirement only 50 nodes.

Takes 11% longer in this case.

cisc3410-fall2012-parsons-lect02 66

• On the Romania example we start with the initial state, expand
one node, and fail to find the goal.

Arad

cisc3410-fall2012-parsons-lect02 67

• For the next iteration we start over

Arad

cisc3410-fall2012-parsons-lect02 68

• This time we push down another level before failing.

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 69

• Then we start a third time

Arad

cisc3410-fall2012-parsons-lect02 70

• And when we get here, we push down another level

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 71

• Expanding the first child node on the second level.

Arad Oradea

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 72

•When that fails to produce a solution, we expand the second
node on the second level.

Arad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 73

• And finally the third node on that level.

Arad LugojArad Oradea Rimnicu
 VilceaFagarasArad Oradea

Zerind Sibiu Timisoara

Arad

cisc3410-fall2012-parsons-lect02 74

Heuristic search

•We now turn to informed search — where the search uses
problem specific information to guide the search.

•Whatever search technique we use, exponential time complexity.

•We want to search less, by having an idea where the goal is.

• Simplest form of problem specific knowledge is heuristic.

• Usual implementation in search is via an evaluation function
which indicates desirability of a given node.

f (n)

•We are already familiar with this idea from uniform cost search
where

f (n) = g(n)

cisc3410-fall2012-parsons-lect02 75

Greedy Search

•Most heuristics estimate cost of cheapest path from node to
solution.

•We have a heuristic function,

h : Nodes→ R

which estimates the distance from the node to the goal.

• Example: In the Romania example, heuristic might be straight
line distance from node to Bucharest.

• Heuristic is said to be admissible if it never overestimates cheapest
solution.

Admissible = optimistic.

• Greedy search involves expanding node with cheapest expected
cost to solution.

cisc3410-fall2012-parsons-lect02 76

function GREEDY-SEARCH(problem, fringe) returns a solution, or
failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe← INSERTALL(EXPAND(node, problem), fringe)
fringe← SORTBYHVALUE(fringe)

end

cisc3410-fall2012-parsons-lect02 77

• As ever we start with the initial node. Note the heuristic value.

Arad

366

cisc3410-fall2012-parsons-lect02 78

•When then expand the child node with the lowest heuristic value

Zerind

Arad

Sibiu Timisoara

253 329 374

cisc3410-fall2012-parsons-lect02 79

• And then we repeat.

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

cisc3410-fall2012-parsons-lect02 80

• In the next level we find the goal.

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

cisc3410-fall2012-parsons-lect02 81

• Greedy search finds solutions quickly.

• It doesn’t always find the best solution where there is more than
one.

• Susceptible to false starts.

– Chases good looking options that turn out to be bad.

• Only looks at current node. Ignores past!

• Also myopic (shortsighted).

cisc3410-fall2012-parsons-lect02 82

2 8 3
1 6 4
7 54

2 8 3
1

6
4

7 53

2
8

3

6
41

7 53

2 8 3
1 6 4
7 55

2 8 3

6
41

7 54

2 8 3
1 6 4

7 55

2 8 3

6
41

7 53

8 3
2 1 4
7 6 5

8 32

6 5
7 1 4

3 4

8 3
2 1 4
7 6 53

To the goal

To more fruitless wandering

© 1998 Morgan Kaufman Publishers

cisc3410-fall2012-parsons-lect02 83

• For the 8-puzzle one good heuristic is:

– count tiles out of place.

• Another is:

– Manhattan blocks’ distance

• The latter works for other problems as well:

– Robot navigation.

cisc3410-fall2012-parsons-lect02 84

A∗ Search
• A∗ is very efficient search strategy.

• Basic idea is to combine

uniform cost search
and

greedy search.

•We look at the cost so far and the estimated cost to goal.

• Gives heuristic f :

f (n) = g(n) + h(n)

where

– g(n) is path cost of n;

– h(n) is expected cost of cheapest solution from n.

• Aims to mimimise overall cost.

cisc3410-fall2012-parsons-lect02 85

function A-STAR-SEARCH(problem, fringe) returns a solution, or
failure

closed← an empty set
fringe← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node←REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed
fringe← INSERTALL(EXPAND(node, problem), fringe)
fringe← SORTBYFVALUE(fringe)

end

cisc3410-fall2012-parsons-lect02 86

• Start with the initial node, this is the one we expand next.

Arad

366=0+366

cisc3410-fall2012-parsons-lect02 87

• At the next level down, Sibiu has the lowest f (·) value.

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

cisc3410-fall2012-parsons-lect02 88

• At the next level, Rimnicu Vicea is the best-looking option.

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

• Though it is further from the start than, for example, Timisoara,
it is also closer to Bucharest.

cisc3410-fall2012-parsons-lect02 89

• However, it is a false start, once we expand its children, they are
worse options than Fagaras.

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

cisc3410-fall2012-parsons-lect02 90

• And when we look at Fagaras’ children, they include Bucharest.

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

cisc3410-fall2012-parsons-lect02 91

The optimality of A∗

• A∗ is optimal in precise sense—it is guaranteed to find a
minimum cost path to the goal.

• There are a set of conditions under which A* will find such a
path:

1. Each node in the graph has a finite number of children.

2. All arcs have a cost greater than some positive ǫ.

3. For all nodes in the graph h(n) always underestimates the true
distance to the goal.

• The key here is the third bullet — the notion of admissibility.

•We will express this by saying a heuristic h(·) is admissible if

h(n) ≤ hT(n)

cisc3410-fall2012-parsons-lect02 92

More informed search

• IF two versions of A∗, A∗1 and A∗2 use different functions h1 and h2,

• AND
h1(n) < h2(n)

for all non-goal nodes,

• THEN we say that A∗2 is more informed than A∗1.

• As an example of ”more informed” consider the 8-puzzle:

– tiles out of place; and

– Manhattan blocks distance.

cisc3410-fall2012-parsons-lect02 93

•Why is “more informed” better?

•We need h(n) to underestimate hT(n) to ensure admissibility.

• But, the closer the estimate, the easier it is to reject nodes which
are not on the optimal path.

• This means less nodes need to be searched.

cisc3410-fall2012-parsons-lect02 94

• There are techniques that go further than those we have studied:

– Iterative deepening A∗ (IDA∗)

– Focussed Dynamic A∗ (called D∗)

– D∗ Lite

– Delayed D∗

– Life-long planning A∗ (called LPA∗)

– PAO∗

• There are four directions we will take from here:

– Local search

– Adversarial search

– Learning the state space.

– Adding in more knowledge about the domain.

cisc3410-fall2012-parsons-lect02 95

Summary

• This lecture introduced the basics of problem solving.

• In particular it discussed state spacemodels and looked at some
techniques for solving them.

– Search for the goal.

– Path through state space is the solution.

•We also looked at some techniques for search:

– Breadth first.

– Uniform cost

– Depth first.

– Iterative deepening

– Best-first search

– A∗ search

cisc3410-fall2012-parsons-lect02 96

