SEARCH

Overview

Aims of the this lecture:
e Introduce problem solving;
e Introduce goal formulation;
® Show how problems can be stated as state space search;
¢ Show the importance and role of abstraction;

e Introduce undirected and heuristic search:

— breadth first, depth first search;
— best first search, A*

¢ Define main performance measures for search.

cisc3410-fall2012-parsons-lect02

Problem Solving Agents|

e Lecture 1 introduced rational agents but didn’t say much about
how we might construct them.

® Today we make a start on understanding how to do this.

e Consider agents as problem solvers:

Systems that have goals and find sequences of actions that achieve
these goals.

cisc3410-fall2012-parsons-lect02

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an
action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation
state <— UPDATE-STATE state, percept)
if seq is empty then
goal <+ FORMULATE-GOAL(state)
problem <~ FORMULATE-PROBLEM (state, goal)
seq <— SEARCH(problem)
action <— RECOMMENDATION (seq, state)
seq <— REMAINDER(seq, state)
return action

cisc3410-fall2012-parsons-lect02

e Key difficulties:

— FORMULATE-GOAL(...)
— FORMULATE-PROBLEM(...)
— SEARCH(...)—
e]t isn’t easy to see how to tackle any of these.

® Here we will concentrate mainly on search but first we’ll say a
bit about goal formulation and problem formulation.

cisc3410-fall2012-parsons-lect02

'Goal Formulation|

® Where do an agent’s goals come from?

— Agent is a program with a specification.
— Specification is to maximise performance measure.

— Should adopt goal if achievement of that goal will maximise
this measure.

¢ But what does that mean in practice?

cisc3410-fall2012-parsons-lect02 6

® As the textbook suggests, let’s imagine we (or any other agent)
are in Arad, Romania:

cisc3410-fall2012-parsons-lect02

¢ On a given day, we might do a number of things:

— get a suntan;
— go sightseeing;
— improve our spoken Romanian;
— enjoy the nightlife;
— avoid a hangover; and so on
¢ But if we have a non-refundable ticket for a flight from Bucharest

the next day, then we can eliminate most of these options, and
adopt the goal of getting to Bucharest.

¢ Anything else will clearly have a lower value.

cisc3410-fall2012-parsons-lect02 8

® Goals provide a focus and filter for decision-making;:

— focus: need to consider how to achieve them;

— filter: need not consider actions that are incompatible with
goals.

® Both of these help computationally.

cisc3410-fall2012-parsons-lect02

Problem Formulation|

¢ What is a problem?
¢ Formal definition is that a problem contains 5 components:
— Initial state;
— Actions;
— Transition model;
— Goal test; and
— Path cost.

e Let’s look at each of these in detail.

cisc3410-fall2012-parsons-lect02 10

Initial state

© The state that the agent starts in.
¢ In the Romania example the initial state might be described as:

In(Arad)

® We could obviously include a lot more detail:
In(Arad)
Temperature(high)
Suntan(acceptable)
Romanian(rudimentary)
and finding the corrected level of abstraction is important.
® Too much detail and (as we will see) the problem can be

intractable.

cisc3410-fall2012-parsons-lect02

¢ The actions that the agent can perform.
¢ These tend to be dependent on what state the agent is in.

e Given a particular state s, ACTIONS(S) is the set of actions that
are applicable.

¢ In the Romania example, in the state In(Arad), the relevant
actions are:

{Go(Sbiu), Go(Timosoara), Go(Zerind) }

® Again, abstraction is important.

cisc3410-fall2012-parsons-lect02 12

Fagaras

99

[JHirsova

Dobreta]
Eforie

cisc3410-fall2012-parsons-lect02 13

'Transition model

e The transition model describes what each action does.

¢ Formally we have a function RESULT(s, @) which defines the state
the agent gets to when it executes action ain state s.

We will call the state we get to a successor state.
¢ In the Romania example:

RESULT(In(Arad), Go(Zerind)) = In(Zerind)

e For now we will deal with deterministic environments, so that a
state only has a single successor.

cisc3410-fall2012-parsons-lect02 14

® The combination of initial state, actions, and transitions define
what we call the state space.

e This is the set of all states that we can get to from the intitial state.

® The state space can be pictured as a directed graph in which
nodes are states and links are actions.

¢ In the Romania example, the map can be thought of as a picture
of the state space.

® A path in a state space is a sequence of actions and states.

e A path through the state space from initial state to goal state is a
plan to get to the goal.

cisc3410-fall2012-parsons-lect02 15

Goal test

¢ Determines whether a given state is the goal state.
¢ In the Romania example:
{In(Bucharest)}
is the goal.
® So a possible goal test would be:

Equal (state, In(Bucharest))

cisc3410-fall2012-parsons-lect02 16

Path cost

e Function that assigns a numeric cost to each path.

® What we use as a path cost depends on the problem we are
solving.

¢ In the Romania example it makes sense to use distance as a cost
function since the agent is in a hurry.

e A more leisurely agent might want to use the price of taking the
bus on each leg as the cost function.

® We will often assume that the path cost can be computed as the
sum of the costs along a path.

e The step cost of taking action ain state sto reach state S is written
asc(s,a9).

cisc3410-fall2012-parsons-lect02 17

¢ Together these elements define a problem.

e A solution is an action sequence (plan) that leads from the initial
state to the goal.

e The quality of a solution is measured by the path cost.
® The optimal solution is the one with the lowest path cost.
e Since we can define the path cost in different ways:

- Distance
— Time
— Monetary cost

there is no loss of generality in equating optimal with the lowest
path cost.

cisc3410-fall2012-parsons-lect02 18

[Example problem: Vacuum world|

=)
&8
&

cisc3410-fall2012-parsons-lect02 19

e States: There are two locations, each of which may contain dirt,
and the agent can be in either.

That leads to 8 possible states.
We might consider any of these to be the initial state.
e Actions: Left, Right, Suck.

e Transition model: The actions work as their names suggest,
except that Left and Right have no effect in (respectively) the
leftmost and rightmost positions.

Suck has no effect in a clean square.
¢ Goal test: Checks if both squares are clean.

e Path cost: Each step costs 1.

cisc3410-fall2012-parsons-lect02 20

[Example problem: 8 puzzle|

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

e States: Each state specifies the location of each tile and the blank.
Any of these can be the initial state.

e Actions: Simplest way to specify actions is to say what happens
to the blank — Left, Right, Up and Down.

Not all of these will be applicable in all locations of the blank.

e Transition model: Gives the resulting state of each action. For
example Left in the initial state above switches the 5 and the
blank.

® Goal test: Checks if the goal configuration has been reached.

e Path cost: Each step costs 1.

cisc3410-fall2012-parsons-lect02 22

Problem Solving as Search|

¢ As with the Romania example, we can think of the state-space of
a problem as a graph.

e Systematically generate a search tree

e The tree is built by taking the initial state and identifying some
states that can be obtained by applying a single operator.

e These new states become the children of the initial state in the
tree.

® These new states are then examined to see if they are the goal
state.

e If not, the process is repeated on the new states.

® We can formalise this description by giving an algorithm for it.

cisc3410-fall2012-parsons-lect02 23

function TREE-SEARCH(problem, strategy) returns a solution, or
failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return
the corresponding solution
else expand the node and add the resulting nodes to
the search tree
end

® Note that we call “candidates for expansion” both fringe and
frontier.

cisc3410-fall2012-parsons-lect02 24

e Initial state

cisc3410-fall2012-parsons-lect02 25

® Successor states of the initial state.

cisc3410-fall2012-parsons-lect02 26

® Successors of the sucessors

® Note how Arad reappears

cisc3410-fall2012-parsons-lect02 27

¢ Note the difference between state space and search tree.

e State space is every possible state and the relationships between
them.

— It is static.

e Search tree the set of states the agent has looked at (is looking at)
and some of the relationships between them.

- It is dynamic.

® Now, about those states that pop up more than once.

cisc3410-fall2012-parsons-lect02 28

function GRAPH-SEARCH(problem, fringe) returns a solution, or
failure

closed <— an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE [problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT (fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe <~ INSERTALL(EXPAND(node, problem), fringe)
end

cisc3410-fall2012-parsons-lect02 29

Search strategies|

¢ Question: How to pick states for expansion?
® A range of possibilities:

— Breadth-first

— Depth-first

— Iterative deepening

— Best-first

— A%

- D* D*-Lite, ...

cisc3410-fall2012-parsons-lect02 30

‘Breadth First Search|

e Start by expanding initial state — gives tree of depth 1.

® Then expand all nodes that resulted from previous step — gives
tree of depth 2.

® Then expand all nodes that resulted from previous step, and so
on.

¢ Expand nodes at depth nbefore level n+ 1.

cisc3410-fall2012-parsons-lect02 31

function BREADTH-FIRST-SEARCH(problem,fringe) returns a
solution, or failure

closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe <~ ADDTOBACK(EXPAND(node, problem), fringe)
end

cisc3410-fall2012-parsons-lect02 32

¢ Add the node representing the initial state into the fringe.

cisc3410-fall2012-parsons-lect02 33

® Remove the first node in the fringe and add its children
® The queue is FIFO.

cisc3410-fall2012-parsons-lect02 34

® Remove the first node in the fringe and add its children — they
are added to the back of the queue.

cisc3410-fall2012-parsons-lect02 35

® Repeat twice more.

KL

cisc3410-fall2012-parsons-lect02 36

e Advantage: quaranteed to reach a solution if one exists.
e If all solutions occur at depth n, then this is a good approach.
¢ Disadvantage: time taken to reach solution!

e Let bbe branching factor — average number of operations that
may be performed from any level.

e If solution occurs at depth d, then we will look at

l+b+b*+-- + b

nodes before reaching solution — exponential.

cisc3410-fall2012-parsons-lect02 37

cisc3410-fall2012-parsons-lect02 38

e Time for breadth first search, b = 10, 1 million nodes per second,
each node needs 1000 bytes of storage.

Depth | Nodes Time Memory
2 110| .11 msec| 107 kilobytes
4/11,110| 11 msecs|10.6 megabytes
6 100] 1.1 secs 1 gigabyte
8 10% |2 minutes | 103 gigabytes
10| 10| 3hours| 10 terabytes
12| 10'?| 13 days 1 petabyte
14| 10*| 35years| 99 petabytes
200 10%| 350 years 10 exabytes

® Combinatorial explosion!

cisc3410-fall2012-parsons-lect02 39

Performance Measures for Search|

e Completeness:
Is the search technique guaranteed to find a solution if one exists?

e Time complexity:
How many computations are required to find solution?
e Space complexity:
How much memory space is required?
e Optimality:
How good is a solution going to be w.r.t. the path cost function.

cisc3410-fall2012-parsons-lect02 40

e Time and space complexity are measured in terms of:

— b —maximum branching factor of the search tree.
— d —depth of the least-cost solution.
— m—maximum depth of the state space (may be co)

cisc3410-fall2012-parsons-lect02 41

® How does breadth-first search measure up?

cisc3410-fall2012-parsons-lect02 42

'Uniform-cost search|

® Expand least-cost unexpanded node.
® We think of this as having an evaluation function:
g(n)
which returns the path cost to a node n.
e fringe = queue ordered by evaluation function, lowest first
e Equivalent to breadth-first if step costs all equal
¢ Complete and optimal.

e Time and space complexity are as bad as for breadth-first search.

cisc3410-fall2012-parsons-lect02 43

function UNIFORM-COST-SEARCH(problem, fringe) returns a
solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE [problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT (fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe - INSERTALL(EXPAND (node, problem), fringe)
fringe <— SORTBYGVALUE(fringe)
end

cisc3410-fall2012-parsons-lect02 44

¢ Add the node representing the initial state into the fringe.

cisc3410-fall2012-parsons-lect02 45

® Remove the first node in the fringe and add its children

¢ The queue is ordered with the cheapest first.

cisc3410-fall2012-parsons-lect02 46

® Remove the first node in the fringe and add its children — they
are added in priority order.

cisc3410-fall2012-parsons-lect02 47

® Repeat.

® What will be the next node to be expanded?

cisc3410-fall2012-parsons-lect02 48

‘Depth First Search‘

e Start by expanding initial state.
® Pick one of nodes resulting from 1st step, and expand it.

e Pick one of nodes resulting from 2nd step, and expand it, and so
on.

¢ Always expand deepest node — make fringe a LIFO queue.

e Follow one “branch” of search tree.

cisc3410-fall2012-parsons-lect02 49

function = DEPTH-FIRST-SEARCH(problem, fringe) — returns a
solution, or failure

closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT (fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe <— ADDTOFRONT (EXPAND(node, problem), fringe)
end

cisc3410-fall2012-parsons-lect02 50

® Depth-first search on the Romania example — we start with the
initial state in the frontier.

cisc3410-fall2012-parsons-lect02 51

® Now we delete that node, and add its children.

CERRIIN
s
St

N,

cisc3410-fall2012-parsons-lect02 52

® Now pick a child and add its children

CARTIR
G
R

cisc3410-fall2012-parsons-lect02 53

¢ and repeat.

cisc3410-fall2012-parsons-lect02 54

¢ Depth first search is not guaranteed to find a solution if one
exists.

e However, if it does find one, amount of time taken is much less
than breadth first search.

© Memory requirement is much less than breadth first search.

e Solution found is not guaranteed to be the best.

cisc3410-fall2012-parsons-lect02 55

>® Q)
>® ©

cisc3410-fall2012-parsons-lect02 56

Algorithmic Improvements

® Are then any algorithmic improvements we can make to basic
search algorithms that will improve overall performance?

e Try to get:
— optimality and completeness
of breadth 1st search with:
— space efficiency
of depth 1st.

® Not too much to be done about time complexity :~(

cisc3410-fall2012-parsons-lect02 57

Depth-limited Search|

e Depth first search has some desirable properties — space
complexity.

e But if wrong branch is expanded (with no solution on it), then it
won’t terminate.

e Idea: introduce a depth limit on branches to be expanded.
- Don’t expand a branch below this depth.

¢ Obviously this can be a source of incompleteness,
BUT knowledge of the problem can help to set a sensible limit.

cisc3410-fall2012-parsons-lect02 58

function DEPTH-LIMITED-SEARCH(problem, limit) returns
soln/fail / cutoff

RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),
problem, limit)

cisc3410-fall2012-parsons-lect02 59

function RECURSIVE-DLS(node, problem, limit) returns
soln/fail/ cutoff
cutoff-occurred? < false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problent) do
result <— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

cisc3410-fall2012-parsons-lect02 60

Tterative Deepening|

® Unfortunately, if we choose a max depth for DLS such that
shortest solution is longer, DLS is not complete.

e Jterative deepening an ingenious complete version of it.
® Basic idea is:

—do DLS for depth 1; if solution found, return it;
— otherwise do DLS for depth n; if solution found, return it;
— otherwise, ...

® So we repeat DLS for all depths until solution found.

cisc3410-fall2012-parsons-lect02 61

function ITERATIVE-DEEPENING-SEARCH(problem) returns a
solution
inputs: problem, a problem

for depth <— 0 to oo do
result <— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

e Calls DLS as subroutine.

cisc3410-fall2012-parsons-lect02 62

® The search covers the whole state space down to the depth limit.
J\A' 'f\/\, /\
[] A e o [] A e o [] []
e o e o e o

Depth bound = 1 Depth bound = 2 Depth bound = 3 Depth bound = 4

© 1998 Morgan Kaufman Publishers

® The order it searches the nodes changes for each depth limit.

cisc3410-fall2012-parsons-lect02 63

¢ Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we
need to regenerate the tree to depth d — 1.

e Isn’t this inefficient?
e Tradeoff time for memory.

¢ In general we might take a /ittle more time, but we save a lot of
memory.

e Now for breadth-first search to level d:

Nt = 1+b+b>+...b%
bd+1_1
b—-1

cisc3410-fall2012-parsons-lect02 64

e In contrast a complete depth-limited search to level j:
bt —1

b1

® (This is just a breadth-first search to depth j.)

i
Ny =

¢ In the worst case, then we have to do this to depth d, so
expanding:

Nid

I
Lige

C b*?—2b—bd+d+1
(b—1)?

cisc3410-fall2012-parsons-lect02

65

e For large d:
Ng _ b

Nt b—1

e So for high branching and relatively deep goals we do a small
amount more work.
e Example: Suppose b =10 and d = 5.

Breadth first search would require examining 111, 111 nodes,
with memory requirement of 100, 000 nodes.

Iterative deepening for same problem: 123, 456 nodes to be
searched, with memory requirement only 50 nodes.

Takes 11% longer in this case.

cisc3410-fall2012-parsons-lect02 66

® On the Romania example we start with the initial state, expand
one node, and fail to find the goal.

cisc3410-fall2012-parsons-lect02

67

e For the next iteration we start over

cisc3410-fall2012-parsons-lect02 68

® This time we push down another level before failing.

cisc3410-fall2012-parsons-lect02

69

e Then we start a third time

e And when we get here, we push down another level

cisc3410-fall2012-parsons-lect02

71

cisc3410-fall2012-parsons-lect02 70
¢ Expanding the first child node on the second level.
cisc3410-fall2012-parsons-lect02 72

® When that fails to produce a solution, we expand the second
node on the second level.

S,
R

Rimnicu
Vilcea

cisc3410-fall2012-parsons-lect02 73

¢ And finally the third node on that level.

cisc3410-fall2012-parsons-lect02 74

'Heuristic search|

® We now turn to informed search — where the search uses
problem specific information to guide the search.

® Whatever search technique we use, exponential time complexity.
® We want to search less, by having an idea where the goal is.
® Simplest form of problem specific knowledge is heuristic.

e Usual implementation in search is via an evaluation function
which indicates desirability of a given node.

f(n)

® We are already familiar with this idea from uniform cost search
where

cisc3410-fall2012-parsons-lect02 75

Greedy Search
Greedy |

® Most heuristics estimate cost of cheapest path from node to
solution.

e We have a heuristic function,

h: Nodes — R
which estimates the distance from the node to the goal.

¢ Example: In the Romania example, heuristic might be straight
line distance from node to Bucharest.

e Heuristic is said to be admissible if it never overestimates cheapest
solution.

Admissible = optimistic.

¢ Greedy search involves expanding node with cheapest expected
cost to solution.

cisc3410-fall2012-parsons-lect02 76

function GREEDY-SEARCH(problem, fringe) returns a solution, or
failure

closed < an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe <— INSERTALL(EXPAND (node, problem), fringe)
fringe <~ SORTBYHVALUE(fringe)
end

cisc3410-fall2012-parsons-lect02 77

e As ever we start with the initial node. Note the heuristic value.

366

cisc3410-fall2012-parsons-lect02 78

® When then expand the child node with the lowest heuristic value

cisc3410-fall2012-parsons-lect02 79

¢ And then we repeat.

>CFagaras>

366 176 380 193

cisc3410-fall2012-parsons-lect02 80

¢ In the next level we find the goal.

cisc3410-fall2012-parsons-lect02

81

e Greedy search finds solutions quickly.

e It doesn’t always find the best solution where there is more than
one.

e Susceptible to false starts.
— Chases good looking options that turn out to be bad.
® Only looks at current node. Ignores past!

e Also myopic (shortsighted).

cisc3410-fall2012-parsons-lect02 82

To the goal

3
A To more fruitless wandering

© 1998 Morgan Kaufman Publishers

cisc3410-fall2012-parsons-lect02

83

e For the 8-puzzle one good heuristic is:
— count tiles out of place.
e Another is:
— Manhattan blocks’ distance
e The latter works for other problems as well:

— Robot navigation.

cisc3410-fall2012-parsons-lect02 84

e A* is very efficient search strategy.
® Basic idea is to combine

uniform cost search
and
greedy search.

® We look at the cost so far and the estimated cost to goal.
e Gives heuristic f:
f(n) = g(n) + h(n)
where

- g(n) is path cost of n;
- h(n) is expected cost of cheapest solution from n.

e Aims to mimimise overall cost.

cisc3410-fall2012-parsons-lect02

85

function A-STAR-SEARCH(problem,fringe) returns a solution, or
failure

closed <— an empty set
fringe <— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT (fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe <— INSERTALL(EXPAND (node, problem), fringe)
fringe <~ SORTBYFVALUE(fringe)
end

cisc3410-fall2012-parsons-lect02 86

e Start with the initial node, this is the one we expand next.

>
366=0+366

cisc3410-fall2012-parsons-lect02

87

e At the next level down, Sibiu has the lowest f(-) value.

Carad >

>
393=140+253 447=118+329 449=75+374

cisc3410-fall2012-parsons-lect02 88

® At the next level, Rimnicu Vicea is the best-looking option.

447=118+329 449=75+374

Oradea

646=280+366 415=239+176 671=291+380 413=220+193

® Though it is further from the start than, for example, Timisoara,
it is also closer to Bucharest.

cisc3410-fall2012-parsons-lect02 89

® However, it is a false start, once we expand its children, they are
worse options than Fagaras.

447=118+329

449=75+374

Rimnicu Vilcea

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

cisc3410-fall2012-parsons-lect02 90

¢ And when we look at Fagaras’ children, they include Bucharest.

447=118+329

449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

cisc3410-fall2012-parsons-lect02 91

The optimality of A*|

e A" is optimal in precise sense—it is guaranteed to find a
minimum cost path to the goal.

® There are a set of conditions under which A* will find such a
path:

1. Each node in the graph has a finite number of children.
2. All arcs have a cost greater than some positive e.

3. For all nodes in the graph h(n) always underestimates the true
distance to the goal.

¢ The key here is the third bullet — the notion of admissibility.
e We will express this by saying a heuristic h(-) is admissible if

h(n) < hr(n)

cisc3410-fall2012-parsons-lect02 92

More informed search

e [F two versions of A%, A} and A} use different functions h; and h,,

e AND
h1<n) < h2<n>

for all non-goal nodes,
e THEN we say that Aj is more informed than A;.
® As an example of “more informed” consider the 8-puzzle:

— tiles out of place; and
— Manhattan blocks distance.

cisc3410-fall2012-parsons-lect02 93

e Why is “more informed” better?
e We need h(n) to underestimate hr(n) to ensure admissibility.

e But, the closer the estimate, the easier it is to reject nodes which
are not on the optimal path.

e This means less nodes need to be searched.

cisc3410-fall2012-parsons-lect02 94

© There are techniques that go further than those we have studied:

- Iterative deepening A* (IDA")

— Focussed Dynamic A" (called D*)
- D* Lite

— Delayed D*

- Life-long planning A" (called LPA)
- PAO*

® There are four directions we will take from here:

— Local search

— Adversarial search

— Learning the state space.

— Adding in more knowledge about the domain.

cisc3410-fall2012-parsons-lect02 95

Summary
e This lecture introduced the basics of problem solving.

e In particular it discussed state space models and looked at some
techniques for solving them.
— Search for the goal.
— Path through state space is the solution.

® We also looked at some techniques for search:

— Breadth first.

— Uniform cost

— Depth first.

— Iterative deepening
— Best-first search

— A" search

cisc3410-fall2012-parsons-lect02 96

