
LOCAL SEARCH AND CONSTRAINT SATISFACTION



Introduction

•We have already looked in some detail at search techniques.

– Next lecture we’ll go on and look at adversartial search.

• However, there are a couple of other topics we should look at
before we get to adversarial search.

– Local search

– Constraint satisfaction

both of which permeate artificial intelligence.

• They are also useful techniques for all computer scientists to
know.
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Iterative improvement

• For many problems, the path is irrelevant, we just want to find
the goal state.

– Optimization problems

• The state space is the set of configurations.

•We want:

– the optimum configuration.

– a configuration that satisfies constraints

• In these cases we can take any state and work to improve it.

– “Local” since only keep a small part of the state space.

• Constant space.

cisc3410-fall2010-parsons-lect03a 3



Travelling salesman

• Problem is to visit all cities once while travelling the shortest
distance.
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• 13,509 U.S. cities with populations of more than 500 people.

(Rice University, 2003).
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Travelling salesman iteratively

• Given a tour, do pairwise exchanges.

• Variants of this get within 1% of optimal very quickly for large
numbers of points.
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n-queens

• Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

•Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

• Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n ≈ 1 million.
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Hill-climbing

function HILL-CLIMBING( problem) returns a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor← a highest-valued successor of current
if VALUE[neighbor] ≤ VALUE[current]

then return STATE[current]
current← neighbor

end
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• Hill climbing is also known as:

– Gradient ascent.

– Gradient descent.

• Like climbing a hill in the fog with amnesia.

– All you can do is keep heading up until you get to the top.
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• Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder
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• Random-restart hill climbing overcomes local maxima—trivially
complete.

– Eventually you start from the bottom of every hill.

• Random sideways moves escapes from shoulders but loops on flat
maxima

cisc3410-fall2010-parsons-lect03a 11



Simulated annealing

• Idea: escape local maxima by allowing some “bad” moves

but gradually decrease their size and frequency

• The random jumping around should mean that, over time, we
find the highest maximum.
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function SIMULATED-ANNEALING( problem, schedule) returns
a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node next, a node
T, “temperature”

current←MAKE-NODE(INITIAL-STATE[problem])
for t← 1 to∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E←VALUE[next] – VALUE[current]
if ∆E > 0 then current← next
else current← next only with probability e∆ E/T
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• At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

• If T is decreased slowly enough we always reach best state x∗

because

e
E(x∗)

kT /e
E(x)
kT = e

E(x∗)−E(x)
kT ≫ 1

for small T

•Widely used in VLSI layout, airline scheduling, etc.
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Local beam search

• Idea: keep k states instead of 1; choose top k of all their
successors

• Not the same as k searches run in parallel!

– Searches that find good states recruit other searches to join
them.

• Problem: quite often, all k states end up on same local hill

• Idea: choose k successors randomly, biased towards good ones

• Observe the close analogy to natural selection!
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Genetic algorithms

• Stochastic local beam search + generate successors from pairs of
states
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• GAs require states encoded as strings (GPs use programs)

• Crossover helps iff substrings are meaningful components

+ =

• GAs 6= evolution

– real genes encode replication machinery!
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Constraint satisfaction

• Another approach to optimization.

• In standard search problems a state is a “black box”—any old
data structure that supports goal test, eval, successor

• In CSP a state is defined by variables Xi with values from a domain
Di

• The goal test is a set of constraints specifying allowable
combinations of values for subsets of variables.

• Simple example of a formal representation language.

• Allows useful general-purpose algorithms with more power than
standard search algorithms
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Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
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Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

• Variables: WA, NT , Q, NSW, V, SA, T

• Domains: Di = {red, green, blue}

• Constraints: adjacent regions must have different colors

– WA 6= NT , or

– (WA,NT) ∈
{(red, green), (red, blue), (green, red), (green, blue), . . .}
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• Solutions are assignments satisfying all constraints,

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

{WA = red,NT = green,Q = red,NSW = green,V = red, SA =
blue, T = green}
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Constraint graph

• Binary CSP: each constraint relates at most two variables

Victoria

WA

NT

SA

Q

NSW

V

T

• Constraint graph: nodes are variables, arcs show constraints
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• General-purpose CSP algorithms use the graph structure to
speed up search.

– Tasmania is an independent subproblem!
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• Discrete variables

Finite domains; size d⇒ O(dn) complete assignments

– Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)

– job scheduling, variables are start/end days for each job

– need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

– linear constraints solvable, nonlinear undecidable

Continuous variables

– start/end times for Hubble Telescope observations

– linear constraints solvable in polynomial time by LP methods
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• Unary constraints involve a single variable

– SA 6= green

• Binary constraints involve pairs of variables

– SA 6= WA

• Higher-order constraints involve 3 or more variables

– cryptarithmetic column constraints

• Preferences (soft constraints)

– red is better than green

often representable by a cost for each variable assignment→
constrained optimization problems
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Cryptarithmetic

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

• Variables: F T U W R O X1 X2 X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• Constraints: alldiff(F,T,U,W,R,O), O + O = R + 10 · X1, etc.
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Real-world CSPs

• Assignment problems

– who teaches what class

• Timetabling problems

– which class is offered when and where?

• Hardware configuration

• Spreadsheets

• Transportation scheduling

• Factory scheduling

• Floorplanning

Notice that many real-world problems involve real-valued
variables

cisc3410-fall2010-parsons-lect03a 27



Standard search formulation

• Let’s start with the straightforward, dumb approach, then fix it

• States are defined by the values assigned so far

– Initial state: the empty assignment, { }

– Successor function: assign a value to an unassigned variable
that does not conflict with current assignment. ⇒ fail if no
legal assignments (not fixable!)

– Goal test: the current assignment is complete

• This is the same for all CSPs!

• Every solution appears at depth n with n variables⇒ use
depth-first search

• Path is irrelevant, so can also use complete-state formulation

• b = (n− ℓ)d at depth ℓ, hence n!dn leaves!
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Backtracking search

• Variable assignments are commutative, i.e., [WA = red then
NT = green] same as [NT = green then WA = red]

• Only need to consider assignments to a single variable at each
node so b = d and there are dn leaves.

• Depth-first search for CSPs with single-variable assignments is
called backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25.
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function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)
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function RECURSIVE-BACKTRACKING(assignment, csp) returns
soln/failure

if assignment is complete then return assignment
var← SELECT-UNASSIGNED-VARIABLE

(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
do
if value is consistent with assignment given CONSTRAINTS[csp]
then

add {var = value} to assignment
result←RECURSIVE-BACKTRACKING(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure
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• No variables assigned values.
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• Assign one variable each of the possible values.
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• Then take one of those proto-solutions and assign another
variable each possible value.
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• And so on, until you get a solution, or a failure.
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• The search has the name backtracking because of what happens
when the solution fails.

• Search jumps back to the most recent branch point.

– The “back track”

• Does this method of searching remind you of anything we have
seen already?
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Improving efficiency

• General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?
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Minimum remaining values (MRV)

• Choose the variable with the fewest legal values

• Reduces the number of states explored before failure/solution.
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Degree heuristic

• Tie-breaker among MRV variables

• Choose the variable with the most constraints on remaining
variables

• Again, reduces the amount of branching below each choice
point.
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Least constraining value

•When there are several values to choose from apply this
heuristic.

• Given a variable, choose the least constraining value — the one
that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

• Combining these heuristics makes 1000 queens feasible
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Forward-checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

• This is a form of inference.

– We figure out the effect of the choice of variable value before
we get to the relevant point in the search.
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WA NT Q NSW V SA T
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WA NT Q NSW V SA T
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WA NT Q NSW V SA T
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WA NT Q NSW V SA T
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Arc-consistency

• Simplest form of propagation makes each arc consistent

• X → Y is consistent iff for every value x of X there is some allowed
y that Y can take.

WA NT Q NSW V SA T

• SA is consitent with NSW
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WA NT Q NSW V SA T

• But NSW is not consistent with SA.
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WA NT Q NSW V SA T

• IF X loses a value, then its neighbors need to be rechecked.
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WA NT Q NSW V SA T

• Arc consistency detects failure earlier than forward checking
because of this propagation.

• Run it after each new assignment of values.
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function AC-3( csp) returns
the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj)←REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
for each Xk in NEIGHBORS[Xi] do
add (Xk, Xi) to queue
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function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff
succeeds

removed← false
for each x in DOMAIN[Xi] do
if no value y in DOMAIN[Xj] allows (x,y)

to satisfy the constraint Xi ↔ Xj

then delete x from DOMAIN[Xi]; removed← true
return removed
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Summary

•We have looked at some variations of search that work when we
are only interested in the solution, not the path.

•We looked at local search:

– Iterative improvement

– Hill-climbing

– Simulated annealing

– Genetic algorithms

• Then we looked at constraint propagation.

•We only scratched the surface of all of these topics — the
textbook covers much more on both topics.
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