
LOCAL SEARCH AND CONSTRAINT SATISFACTION

Introduction

•We have already looked in some detail at search techniques.

– Next lecture we’ll go on and look at adversartial search.

• However, there are a couple of other topics we should look at
before we get to adversarial search.

– Local search

– Constraint satisfaction

both of which permeate artificial intelligence.

• They are also useful techniques for all computer scientists to
know.

cisc3410-fall2010-parsons-lect03a 2

Iterative improvement

• For many problems, the path is irrelevant, we just want to find
the goal state.

– Optimization problems

• The state space is the set of configurations.

•We want:

– the optimum configuration.

– a configuration that satisfies constraints

• In these cases we can take any state and work to improve it.

– “Local” since only keep a small part of the state space.

• Constant space.

cisc3410-fall2010-parsons-lect03a 3

Travelling salesman

• Problem is to visit all cities once while travelling the shortest
distance.

cisc3410-fall2010-parsons-lect03a 4

• 13,509 U.S. cities with populations of more than 500 people.

(Rice University, 2003).

cisc3410-fall2010-parsons-lect03a 5

Travelling salesman iteratively

• Given a tour, do pairwise exchanges.

• Variants of this get within 1% of optimal very quickly for large
numbers of points.

cisc3410-fall2010-parsons-lect03a 6

n-queens

• Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

•Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

• Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n ≈ 1 million.

cisc3410-fall2010-parsons-lect03a 7

Hill-climbing

function HILL-CLIMBING(problem) returns a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor← a highest-valued successor of current
if VALUE[neighbor] ≤ VALUE[current]

then return STATE[current]
current← neighbor

end

cisc3410-fall2010-parsons-lect03a 8

• Hill climbing is also known as:

– Gradient ascent.

– Gradient descent.

• Like climbing a hill in the fog with amnesia.

– All you can do is keep heading up until you get to the top.

cisc3410-fall2010-parsons-lect03a 9

• Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

cisc3410-fall2010-parsons-lect03a 10

• Random-restart hill climbing overcomes local maxima—trivially
complete.

– Eventually you start from the bottom of every hill.

• Random sideways moves escapes from shoulders but loops on flat
maxima

cisc3410-fall2010-parsons-lect03a 11

Simulated annealing

• Idea: escape local maxima by allowing some “bad” moves

but gradually decrease their size and frequency

• The random jumping around should mean that, over time, we
find the highest maximum.

cisc3410-fall2010-parsons-lect03a 12

function SIMULATED-ANNEALING(problem, schedule) returns
a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node next, a node
T, “temperature”

current←MAKE-NODE(INITIAL-STATE[problem])
for t← 1 to∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E←VALUE[next] – VALUE[current]
if ∆E > 0 then current← next
else current← next only with probability e∆ E/T

cisc3410-fall2010-parsons-lect03a 13

• At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

• If T is decreased slowly enough we always reach best state x∗

because

e
E(x∗)

kT /e
E(x)
kT = e

E(x∗)−E(x)
kT ≫ 1

for small T

•Widely used in VLSI layout, airline scheduling, etc.

cisc3410-fall2010-parsons-lect03a 14

Local beam search

• Idea: keep k states instead of 1; choose top k of all their
successors

• Not the same as k searches run in parallel!

– Searches that find good states recruit other searches to join
them.

• Problem: quite often, all k states end up on same local hill

• Idea: choose k successors randomly, biased towards good ones

• Observe the close analogy to natural selection!

cisc3410-fall2010-parsons-lect03a 15

Genetic algorithms

• Stochastic local beam search + generate successors from pairs of
states

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

cisc3410-fall2010-parsons-lect03a 16

• GAs require states encoded as strings (GPs use programs)

• Crossover helps iff substrings are meaningful components

+ =

• GAs 6= evolution

– real genes encode replication machinery!

cisc3410-fall2010-parsons-lect03a 17

Constraint satisfaction

• Another approach to optimization.

• In standard search problems a state is a “black box”—any old
data structure that supports goal test, eval, successor

• In CSP a state is defined by variables Xi with values from a domain
Di

• The goal test is a set of constraints specifying allowable
combinations of values for subsets of variables.

• Simple example of a formal representation language.

• Allows useful general-purpose algorithms with more power than
standard search algorithms

cisc3410-fall2010-parsons-lect03a 18

Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

cisc3410-fall2010-parsons-lect03a 19

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

• Variables: WA, NT , Q, NSW, V, SA, T

• Domains: Di = {red, green, blue}

• Constraints: adjacent regions must have different colors

– WA 6= NT , or

– (WA,NT) ∈
{(red, green), (red, blue), (green, red), (green, blue), . . .}

cisc3410-fall2010-parsons-lect03a 20

• Solutions are assignments satisfying all constraints,

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

{WA = red,NT = green,Q = red,NSW = green,V = red, SA =
blue, T = green}

cisc3410-fall2010-parsons-lect03a 21

Constraint graph

• Binary CSP: each constraint relates at most two variables

Victoria

WA

NT

SA

Q

NSW

V

T

• Constraint graph: nodes are variables, arcs show constraints

cisc3410-fall2010-parsons-lect03a 22

• General-purpose CSP algorithms use the graph structure to
speed up search.

– Tasmania is an independent subproblem!

cisc3410-fall2010-parsons-lect03a 23

• Discrete variables

Finite domains; size d⇒ O(dn) complete assignments

– Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)

– job scheduling, variables are start/end days for each job

– need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

– linear constraints solvable, nonlinear undecidable

Continuous variables

– start/end times for Hubble Telescope observations

– linear constraints solvable in polynomial time by LP methods

cisc3410-fall2010-parsons-lect03a 24

• Unary constraints involve a single variable

– SA 6= green

• Binary constraints involve pairs of variables

– SA 6= WA

• Higher-order constraints involve 3 or more variables

– cryptarithmetic column constraints

• Preferences (soft constraints)

– red is better than green

often representable by a cost for each variable assignment→
constrained optimization problems

cisc3410-fall2010-parsons-lect03a 25

Cryptarithmetic

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

• Variables: F T U W R O X1 X2 X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• Constraints: alldiff(F,T,U,W,R,O), O + O = R + 10 · X1, etc.

cisc3410-fall2010-parsons-lect03a 26

Real-world CSPs

• Assignment problems

– who teaches what class

• Timetabling problems

– which class is offered when and where?

• Hardware configuration

• Spreadsheets

• Transportation scheduling

• Factory scheduling

• Floorplanning

Notice that many real-world problems involve real-valued
variables

cisc3410-fall2010-parsons-lect03a 27

Standard search formulation

• Let’s start with the straightforward, dumb approach, then fix it

• States are defined by the values assigned so far

– Initial state: the empty assignment, { }

– Successor function: assign a value to an unassigned variable
that does not conflict with current assignment. ⇒ fail if no
legal assignments (not fixable!)

– Goal test: the current assignment is complete

• This is the same for all CSPs!

• Every solution appears at depth n with n variables⇒ use
depth-first search

• Path is irrelevant, so can also use complete-state formulation

• b = (n− ℓ)d at depth ℓ, hence n!dn leaves!

cisc3410-fall2010-parsons-lect03a 28

Backtracking search

• Variable assignments are commutative, i.e., [WA = red then
NT = green] same as [NT = green then WA = red]

• Only need to consider assignments to a single variable at each
node so b = d and there are dn leaves.

• Depth-first search for CSPs with single-variable assignments is
called backtracking search

• Backtracking search is the basic uninformed algorithm for CSPs

• Can solve n-queens for n ≈ 25.

cisc3410-fall2010-parsons-lect03a 29

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

cisc3410-fall2010-parsons-lect03a 30

function RECURSIVE-BACKTRACKING(assignment, csp) returns
soln/failure

if assignment is complete then return assignment
var← SELECT-UNASSIGNED-VARIABLE

(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
do
if value is consistent with assignment given CONSTRAINTS[csp]
then

add {var = value} to assignment
result←RECURSIVE-BACKTRACKING(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure

cisc3410-fall2010-parsons-lect03a 31

• No variables assigned values.

cisc3410-fall2010-parsons-lect03a 32

• Assign one variable each of the possible values.

cisc3410-fall2010-parsons-lect03a 33

• Then take one of those proto-solutions and assign another
variable each possible value.

cisc3410-fall2010-parsons-lect03a 34

• And so on, until you get a solution, or a failure.

cisc3410-fall2010-parsons-lect03a 35

• The search has the name backtracking because of what happens
when the solution fails.

• Search jumps back to the most recent branch point.

– The “back track”

• Does this method of searching remind you of anything we have
seen already?

cisc3410-fall2010-parsons-lect03a 36

Improving efficiency

• General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

cisc3410-fall2010-parsons-lect03a 37

Minimum remaining values (MRV)

• Choose the variable with the fewest legal values

• Reduces the number of states explored before failure/solution.

cisc3410-fall2010-parsons-lect03a 38

Degree heuristic

• Tie-breaker among MRV variables

• Choose the variable with the most constraints on remaining
variables

• Again, reduces the amount of branching below each choice
point.

cisc3410-fall2010-parsons-lect03a 39

Least constraining value

•When there are several values to choose from apply this
heuristic.

• Given a variable, choose the least constraining value — the one
that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

• Combining these heuristics makes 1000 queens feasible

cisc3410-fall2010-parsons-lect03a 40

Forward-checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

• This is a form of inference.

– We figure out the effect of the choice of variable value before
we get to the relevant point in the search.

cisc3410-fall2010-parsons-lect03a 41

WA NT Q NSW V SA T

cisc3410-fall2010-parsons-lect03a 42

WA NT Q NSW V SA T

cisc3410-fall2010-parsons-lect03a 43

WA NT Q NSW V SA T

cisc3410-fall2010-parsons-lect03a 44

WA NT Q NSW V SA T

cisc3410-fall2010-parsons-lect03a 45

Arc-consistency

• Simplest form of propagation makes each arc consistent

• X → Y is consistent iff for every value x of X there is some allowed
y that Y can take.

WA NT Q NSW V SA T

• SA is consitent with NSW

cisc3410-fall2010-parsons-lect03a 46

WA NT Q NSW V SA T

• But NSW is not consistent with SA.

cisc3410-fall2010-parsons-lect03a 47

WA NT Q NSW V SA T

• IF X loses a value, then its neighbors need to be rechecked.

cisc3410-fall2010-parsons-lect03a 48

WA NT Q NSW V SA T

• Arc consistency detects failure earlier than forward checking
because of this propagation.

• Run it after each new assignment of values.

cisc3410-fall2010-parsons-lect03a 49

function AC-3(csp) returns
the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj)←REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
for each Xk in NEIGHBORS[Xi] do
add (Xk, Xi) to queue

cisc3410-fall2010-parsons-lect03a 50

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff
succeeds

removed← false
for each x in DOMAIN[Xi] do
if no value y in DOMAIN[Xj] allows (x,y)

to satisfy the constraint Xi ↔ Xj

then delete x from DOMAIN[Xi]; removed← true
return removed

cisc3410-fall2010-parsons-lect03a 51

Summary

•We have looked at some variations of search that work when we
are only interested in the solution, not the path.

•We looked at local search:

– Iterative improvement

– Hill-climbing

– Simulated annealing

– Genetic algorithms

• Then we looked at constraint propagation.

•We only scratched the surface of all of these topics — the
textbook covers much more on both topics.

cisc3410-fall2010-parsons-lect03a 52

