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Introduction

• So far we have considered mainly accessible/observable
environments.

– Or pretended that environments were accessible/observable.

• Clearly not true of the real world:

– Is is raining in Manhattan?

• Partial observability can arise for many reasons.

– World structure vs. sensor ability.

– Sensor noise.

– Computational complexity.
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Types of problem

•Who is outside in the corridor?

– Uncertainty

• The radio says it is raining in Manhattan, but when I phone my
wife she says it isn’t raining.

– Ambiguity

– Contradiction.

• Is it true that “Simon is tall”

– Vagueness

•Who will be in next year’s World Series?

– Ignorance
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Uncertainty

• Let action At = leave for airport t minutes before flight

– Will At get me there on time?

• Problems:

1. partial observability (road state, other drivers’ plans, etc.)

2. noisy sensors (1010 WINS traffic reports)

3. uncertainty in action outcomes (flat tire, etc.)

4. immense complexity of modelling and predicting traffic
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• Hence a purely logical approach either:

1. risks falsehood: “A90 will get me there on time”

2. leads to conclusions that are too weak for decision making:

“A90 will get me there on time if there’s no accident on the
Williamsburg bridge, and it doesn’t rain and my tires remain
intact etc etc.”

• (A1440 might reasonably be said to get me there on time but I’d
have to stay overnight in the airport . . .)
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• How could an agent cope with this?

cisc3410-fall2012-parsons-lect09 6



Methods for handling uncertainty
• Nonmonotonic logic

– Assume my car does not have a flat tire

– Assume A25 works unless contradicted by evidence

• Issues: What assumptions are reasonable? How to handle
contradiction?
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• Rules with fudge factors:

– A25 7→0.3 AtAirportOnTime

– Sprinkler 7→0.99 WetGrass

– WetGrass 7→0.7 Rain

• Issues: Problems with combination, e.g.,

Sprinkler causes Rain??

• Semantics?
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• Probability

– Given the available evidence,

A25 will get me there on time with probability 0.04

• Issues: Computational complexity, obtaining values, semantics.

– We will consider the computational issues in some detail.
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• Nate Silver, Five Thirty Eight
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Probability

• Probabilistic assertions summarize effects of

– laziness: failure to enumerate exceptions, qualifications, etc.

– ignorance: lack of relevant facts, initial conditions, etc.

• Subjective or Bayesian probability:

– Probabilities relate propositions to one’s own state of
knowledge

P(A25|no reported accidents) = 0.06

• Probabilities of propositions change with new evidence:

P(A25|no reported accidents, 5 a.m.) = 0.15

(Analogous to logical entailment status KB |= α, not truth.)
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Making decisions under uncertainty

• Suppose I believe the following:

P(A25 gets me there on time| . . .) = 0.04

P(A90 gets me there on time| . . .) = 0.70

P(A120 gets me there on time| . . .) = 0.95

P(A1440 gets me there on time| . . .) = 0.9999

Which action to choose?
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• Depends on my preferences for missing flight vs. airport cuisine,
sleeping on a bench, and so on.

• Utility theory is used to represent and infer preferences

• Decision theory = utility theory + probability theory

•We will come back to decision theory with a vengence next time.
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Probability basics

• Begin with a set Ω—the sample space.

• This is all the possible things that could happen.

– 6 possible rolls of a die.

• ω ∈ Ω is a sample point, possible world, atomic event.
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• A probability space or probability model is a sample space with an
assignment P(ω) for every ω ∈ Ω such that:

0 ≤ P(ω) ≤ 1
∑

ω
P(ω) = 1

P(1) =P(2) =P(3) =P(4) =P(5) =P(6) = 1/6.
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• An event A is any subset of Ω

P(A) =
∑

{ω∈A}
P(ω)

P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables

• A random variable is a function from sample points to some range.

– raining(Brooklyn) = true.

– temperature(234NE) = 73

• P induces a probability distribution for any r.v. X:

P(X = xi) =
∑

{ω:X(ω) = xi}
P(ω)

P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2
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Propositions

• Think of a proposition as the event (set of sample points) where
the proposition is true

• Given Boolean random variables A and B:

event a = set of sample points where A(ω) = true

event ¬a = set of sample points where A(ω) = false

event a ∧ b = points where A(ω) = true and B(ω) = true

• Often in AI applications, the sample points are defined by the
values of a set of random variables.

• A state can be defined by a set of Boolean variables.

a ∧ b ∧ ¬c A= true,B= true,C= false

This is then just a sample point.
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• Thus, with Boolean variables, sample point = propositional logic
model

A= true, B= false a ∧ ¬b

• Proposition = disjunction of atomic events in which it is true

(a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)

⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)
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Why use probability?

• The definitions imply that certain logically related events must
have related probabilities

P(a ∨ b) = P(a) + P(b)− P(a ∧ b)
>A     B

True

A B
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• de Finetti (1931): an agent who bets according to probabilities
that violate these axioms can be forced to bet so as to lose money
regardless of outcome.

– Dutch book argument
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Syntax for propositions

• Propositional or Boolean random variables

– Cavity (do I have a cavity?)

– Cavity= true is a proposition, also written cavity

• Discrete random variables (finite or infinite)

– Weather is one of 〈sunny, rain, cloudy, snow〉

– Weather = rain is a proposition

Values must be exhaustive and mutually exclusive

• Continuous random variables (bounded or unbounded)

– Temp=21.6; also allow, e.g., Temp < 22.0.

• Arbitrary Boolean combinations of basic propositions
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Prior probability

• Prior or unconditional probabilities of propositions

P(Cavity= true) = 0.1 and P(Weather = sunny) = 0.72

correspond to belief before (prior) to arrival of any (new)
evidence.

• Probability distribution gives values for all possible assignments:

P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉

• Distribution is normalized, i.e., sums to 1
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• Joint probability distribution for a set of r.v.s gives the probability
of every atomic event on those r.v.s (i.e., every sample point)

P(Weather,Cavity) = a 4× 2 matrix of values

Weather = sunny rain cloudy snow
Cavity= true 0.144 0.02 0.016 0.02
Cavity= false 0.576 0.08 0.064 0.08

• Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Conditional probability

• Conditional or posterior probabilities

P(cavity|toothache) = 0.8

given that toothache is all I know NOT “if toothache then 80%
chance of cavity”

• Notation for conditional distributions:

P(Cavity|Toothache)

A 2-element vector of 2-element vectors.
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• If we know more, e.g., cavity is also given, then we have

P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence
arrives, but is not always useful

• New evidence may be irrelevant, allowing simplification

P(cavity|toothache, jetsWin) = P(cavity|toothache) = 0.8

• This kind of inference, sanctioned by domain knowledge, is
crucial
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• Definition of conditional probability:

P(a|b) =
P(a ∧ b)

P(b)
if P(b) 6= 0

• Product rule gives an alternative formulation:

P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

• A general version holds for whole distributions,

P(Weather,Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix multiplication)
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• Chain rule is derived by successive application of product rule:

P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1)P(Xn|X1, . . . ,Xn−1)

= P(X1, . . . ,Xn−2) P(Xn−1|X1, . . . ,Xn−2)

P(Xn|X1, . . . ,Xn−1)

= . . .

=
n
∏

i=1
P(Xi|X1, . . . ,Xi−1)
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Inference by enumeration

• Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL
.108 .012

.016 .064

.072

.144

.008

.576

• For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ
P(ω)
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cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ
P(ω)

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• For any proposition φ, sum the atomic events where it is true:

P(φ) =
∑

ω:ω|=φ
P(ω)

• P(cavity ∨ toothache) =
0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• Can also compute conditional probabilities:

P(¬cavity|toothache) =
P(¬cavity ∧ toothache)

P(toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization

cavityL
toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)
= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]
= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]

= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉
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Inference by enumeration

• Let X be all the variables.

• Typically, we want the posterior joint distribution of the query
variables Y given specific values e for the evidence variables E

• Let the hidden variables be H = X− Y− E

• Then the required summation of joint entries is done by
summing out the hidden variables:

P(Y|E= e) = αP(Y,E= e)

= α
∑

h

P(Y,E= e,H=h)

• The terms in the summation are joint entries because Y, E, andH
together exhaust the set of random variables

cisc3410-fall2012-parsons-lect09 34



• Obvious problems:

1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries???

• This problem effectively stopped the use of probability in AI
until the mid 80s
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Independence

• A and B are independent iff

P(A|B) = P(A), or
P(B|A) = P(B), or
P(A,B) = P(A)P(B)

•Why is this interesting?

– Can help with the size of the problem.
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Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

• P(Toothache,Catch,Cavity,Weather)

= P(Toothache,Catch,Cavity)P(Weather)

• 32 entries reduced to 12; for n independent biased coins, 2n → n

• Absolute independence powerful but rare

• Dentistry is a large field with hundreds of variables, none of
which are independent. What to do?
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Conditional independence

• P(Toothache,Cavity,Catch) has 23 − 1 = 7 independent entries

• If I have a cavity, the probability that the probe catches in it
doesn’t depend on whether I have a toothache:

P(catch|toothache, cavity) = P(catch|cavity) (1)

• The same independence holds if I haven’t got a cavity:

P(catch|toothache,¬cavity) = P(catch|¬cavity) (2)

• Catch is conditionally independent of Toothache given Cavity

P(Catch|Toothache,Cavity) = P(Catch|Cavity)

• Equivalent statements:

P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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•Write out full joint distribution using chain rule:

P(Toothache,Catch,Cavity)

= P(Toothache|Catch,Cavity)P(Catch,Cavity)

= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)

= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

• In most cases, the use of conditional independence reduces the
size of the representation of the joint distribution from
exponential in n to linear in n.

• Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

– Can often make conditional independence statements when
little else is known.
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Bayes’ Rule

• Product rule P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

⇒ Bayes’ rule P(a|b) =
P(b|a)P(a)

P(b)

or in distribution form

P(Y|X) =
P(X|Y)P(Y)

P(X)
= αP(X|Y)P(Y)
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• Useful for assessing diagnostic probability from causal
probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

• Let M be meningitis, S be stiff neck:

P(m|s) =
P(s|m)P(m)

P(s)

=
0.8× 0.0001

0.1
= 0.0008

• Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

• So, in our running example

P(Cavity|toothache ∧ catch)
= αP(toothache ∧ catch|Cavity)P(Cavity)
= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

• This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)
∏

i
P(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

• Total number of parameters is linear in n
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What we learned so far

• Probability is a rigorous formalism for uncertain knowledge

• Joint probability distribution specifies probability of every atomic
event

• Queries can be answered by summing over atomic events

• For nontrivial domains, we must find a way to reduce the joint
size

• Independence and conditional independence provide the tools

• Next we’ll look at how this is used.
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Bayesian networks

• A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

• Syntax:

– a set of nodes, one per variable

– a directed, acyclic graph (link ≈ “directly influences”) a
conditional distribution for each node given its parents

P(Xi|Parents(Xi))

• In the simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over Xi

for each combination of parent values
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• Topology of network encodes conditional independence
assertions:

Weather Cavity

Toothache Catch

• Weather is independent of the other variables

• Toothache and Catch are conditionally independent given Cavity
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• An example (from California):

I’m at work, neighbor John calls to say my alarm is ringing,
but neighbor Mary doesn’t call. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

• Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects “causal” knowledge:

– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call
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.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T
T
F
F

E

T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A

T
F

.90

.05

P(J|A) A

T
F

.70

.01

P(M|A)
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Compactness
• A CPT for Boolean Xi with k Boolean
parents has 2krows for the combinations of
parent values

• Each row requires one number p for
Xi = true (the number for Xi = false is just
1− p)

• If each variable has no more than k parents,
the complete network requires O(n · 2k)
numbers

– grows linearly with n, vs. O(2n) for the
full joint distribution

• For burglary net, 1+1+4+2+2= 10 numbers
(vs. 25 − 1 = 31)

B E

J

A

M
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Global semantics

• Global semantics defines the full joint
distribution as the product of the local
conditional distributions:

P(x1, . . . , xn) =
n
∏

i=1
P(xi|parents(Xi))

• P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

=

B E

J

A

M
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Global semantics

• Global semantics defines the full joint
distribution as the product of the local
conditional distributions:

P(x1, . . . , xn) =
n
∏

i=1
P(xi|parents(Xi))

• P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P(j|a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063

B E

J

A

M
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Local semantics

• Local semantics: each node is conditionally independent of its
nondescendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

• Theorem: Local semantics ⇔ global semantics
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Markov blanket

• Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Compact conditional distributions

• CPT grows exponentially with number of parents

– Use canonical distributions that are defined compactly

• Deterministic nodes are the simplest case.

• X = f (Parents(X)) for some function f

– Boolean functions:

NorthAmerican ⇔ Canadian ∨ US ∨Mexican

– Numerical relationships among continuous variables

∂Level
∂t

= inflow + precipitation - outflow - evaporation
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• Noisy-OR distributions model multiple noninteracting causes

1. Parents U1 . . .Uk include all causes (can add leak node)

2. Independent failure probability qi for each cause alone

⇒ P(X|U1 . . .Uj,¬Uj+1 . . .¬Uk) = 1− prodj
i=1qi

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

• Number of parameters linear in number of parents
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Inference tasks

• Simple queries: compute posterior marginal P(Xi|E= e)

P(NoGas|Gauge= empty, Lights= on, Starts= false)

• Conjunctive queries

P(Xi,Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

• Optimal decisions: decision networks include utility information;
probabilistic inference required for

P(outcome|action, evidence)

• Value of information: which evidence to seek next?

• Sensitivity analysis: which probability values are most critical?

• Explanation: why do I need a new starter motor?
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Inference by enumeration

• Simplest approach to evaluating the network is to do just as we
did for the dentist example.

• Difference is that we use the structure of the network to tell us
which sets of joint probabilities to use.

– Thanks Professor Markov

• Gives us a slightly intelligent way to sum out variables from the
joint without actually constructing its explicit representation
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• Simple query on the burglary network.

P(B|j,m)

= P(B, j,m)/P(j,m)

= αP(B, j,m)

= α ∑

e
∑

a P(B, e, a, j,m)

• Rewrite full joint entries using product of
CPT entries:

– P(B|j,m)

– = α ∑

e
∑

a P(B)P(e)P(a|B, e)P(j|a)P(m|a)

– = αP(B) ∑

e P(e) ∑

a P(a|B, e)P(j|a)P(m|a)

B E

J

A

M
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Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over
X

inputs: X, the query variable
e, observed values for variables ∃
bn, a Bayesian network with variables {X} ∪ ∃ ∪ Y

Q(X)← a distribution over X, initially empty
for each value xi of X do

extend ewith value xi for X
Q(xi)← ENUMERATE-ALL(VARS[bn], e)

return NORMALIZE(Q(X))
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function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y← FIRST(vars)
if Y has value y in e

then return P(y | Pa(Y)) × ENUMERATE-ALL(REST(vars), e)
else return ∑

y P(y | Pa(Y)) × ENUMERATE-ALL(REST(vars),
ey)

where ey is e extended with Y = y
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Evaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

• Enumeration is inefficient: repeated computation

– Computes P(j|a)P(m|a) for each value of e
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Complexity of exact inference
• Singly connected networks (or polytrees)

– any two nodes are connected by at most one (undirected) path

– time and space cost of variable elimination are O(dkn)

•Multiply connected networks:

– can reduce 3SAT to exact inference ⇒ NP-hard

– equivalent to counting 3SAT models ⇒ #P-complete

A B C D

1 2 3

AND

0.5 0.50.50.5

LL

L
L

1.  A  v  B  v  C

2.  C  v  D  v    A

3.  B  v  C  v    D
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Inference by stochastic simulation

• Basic idea:

1. Draw N samples from a sampling distribution S

2. Compute an approximate posterior probability P̂

3. Show this converges to the true probability P
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Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F
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• So, this time we get the event

[true, false, true, true]

• If we repeat the process many times, we can count the number of
times [true, false, true, true] is the result.

• The proportion of this to the total number of runs is:

P(c,¬s, r,w)

• The more runs, the more accurate the probability.
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• This algorithm:

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution

P(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi))
given the values of Parents(Xi) in x

return x

captures the no evidence case, which is what we just looked at.
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• To get values with evidence, we need conditional probabilities

P(X|e)

• Could just compute the joint probability and sum out the
conditionals but that is inefficient.

• Better is to use rejection sampling

– Sample from the network but reject samples that don’t match
the evidence.

– If we want P(w|c) and our sample picks ¬c, we stop that run
immediately.

– For unlikely events, may have to wait a long time to get
enough matching samples.

• Still inefficient.
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• Likelihood weighting:

– Version of importance sampling.

– Fix evidence variable to true, so just sample relevant events.

– Have to weight them with the likelihood that they fit the
evidence.

– Use the probabilities we know to weight the samples.
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From probability to decision making

•What we have covered allows us to compute probabilities of
interesting events.

• But beliefs alone are not so interesting to us.

• In the WW don’t care so much if there is a pit in (2, 2), so much
as we care whether we should go left or right.

• This is complicated because the world is uncertain.

– Don’t know the outcome of actions.

– Non-deterministic as well as partially observable
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DAMAYOR: Mookie.

MOOKIE: Gotta go.

DA MAYOR: C’mere, Doctor.

DAMAYOR: Doctor, this is Da
Mayor talkin’.

MOOKIE: OK. OK.

DA MAYOR: Doctor, always
try to do the right thing.

MOOKIE: That’s it?

DA MAYOR: That’s it.

MOOKIE: I got it.

(Spike Lee, Do the Right Thing)
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• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.00?

cisc3410-fall2012-parsons-lect09 76



• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.50?
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• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.20?
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• I offer you the chance to take part in this gamble:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1.40?
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•We can’t make this choice without thinking about how likely
outcomes are.

• Although the first option is attractive, it isn’t necessarily the best
course of action (especially if the choice is iterated).

• Decision theory gives us a way of analysing this kind of
situation.
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• Consider being offered a bet in which you pay $2 if an odd
number is rolled on a die, and win $3 if an even number appears.

• To analyse this prospect we need a random variable X, as the
function:

X : Ω 7→ ℜ

from the sample space to the values of the outcomes. Thus for
ω ∈ Ω:

X(ω) =















3, if ω = 2, 4, 6
−2, if ω = 1, 3, 5

• The probability that X takes the value 3 is:

Pr({2, 4, 6}) = Pr({2}) + Pr({4}) + Pr({6})

= 0.5

• How do we analyse how much this bet is worth to us?
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• To do this, we need to calculate the expected value of X.

• This is defined by:

E(X) =
∑

k
kPr(X = k)

where the summation is over all values of k for which
Pr(X = k) 6= 0.

• Here the expected value is:

E(X) = 0.5× 3 + 0.5×−2

• Thus the expected value of X is $0.5, and we take this to be the
value of the bet.

– Not the value you will get.
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•What is the expected value of this event:

– $0 one time in one hundred;

– $1 89 times in one hundred;

– $5 10 times in one hundred.

•Would you prefer this to $1?
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• And now we can make a first stab at defining what rational
action is.

• Rational action is the choice of actions with the greatest expected
value for the agent in question.

• The problem is then to decide what “value” is.
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Decision theory

• One obvious way to define “value” is in terms of money.

• This has obvious applications in writing programs to trade
stocks, or programs to play poker.

• The problem is that the value of a given amount of money to an
individual is highly subjective.

• In addition, using monetary values does not take into account an
individual’s attitude to risk.
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• As an example, consider a transaction which offered the
following payoffs:

– $0 one time in one hundred;

– $1 million 89 times in one hundred;

– $5 million 10 times in one hundred.

•Would you prefer this to a guaranteed $1 million?
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• Utilities are a means of solving the problems with monetary
values.

• Utilities are built up from preferences, and preferences are
captured by a preference relation � which satisfies:

a � b or b � a
a � b and b � c⇒ a � c

• You have to be able to state a preference.

• Preferences are transitive.
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• A function:
u : Ω 7→ ℜ

is a utility function representing a preference relation � if and
only if:

u(a) ≤ u(b) ↔ a � b

•With additional assumptions on the preference relation (to do
with preferences between lotteries) Von Neumann and
Morgenstern identified a sub-class of utility functions.
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• These “Von Neumann and Morgenstern utility functions”are
such that calculating expected utility, and choosing the action
with the maximum expected utility is the “best” choice
according to the preference relation.

• This is “best” in the sense that any other choice would disagree
with the preference order.

• This is why the maximum expected utility decision criterion is said
to be rational.
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• To relate this back to the problem of an agent making a rational
choice, consider an agent with a set of possible actions A
available to it.

• Each a ∈ A has a sample space Ωa associated with it, and a set of
possible outcomes sa where sa ⊆ Sa and Sa = 2Ωa.

• (This is a simplification since each sa will usually be conditional
on the state of the environment the agent is in.)
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• The action a∗ which a rational agent should choose is that which
maximises the agent’s utility.

• In other words the agent should pick:

a∗ = arg max
a∈A

u(sa)

• The problem is that in any realistic situation, we don’t know
which sa will result from a given a, so we don’t know the utility
of a given action.

• Instead we have to calculate the expected utility of each action
and make the choice on the basis of that.
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• In other words, for the set of outcomes sa of each action each a,
the agent should calculate:

E(u(sa)) =
∑

s′∈sa

u(s′).Pr(sa = s′)

and pick the best.

s1

s2

s

a

a

1

2
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• Thus to be rational, an agent needs to choose a∗ such that:

a∗ = arg max
a∈A

∑

s′∈sa

u(s′).Pr(sa = s′)

s1

s2

s

a

a

1

2
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• As an example, consider an agent which has to choose between
tossing a coin, rolling a die, or receiving a payoff of $ 1.

• If the coin is chosen, then the agent gets $1.50 a head and $0.5 for
a tail.

• If the die is chosen, the agent gets $5 if a six is rolled, $1 if a two
or three is rolled, and nothing otherwise.

•What is the rational choice, assuming that the agent’s
preferences are (for once) modelled by monetary value?
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•Well, we need to calculate the expected outcome of each choice.

• For doing nothing, we have a1 = “receive payoff”, sa1 = {“get
$1”}, u(“get $1) = 1 and Pr(sa1 = “get $1) = 1.

• Thus:
E(u(sa1)) = 1

cisc3410-fall2012-parsons-lect09 95



• If the coin is chosen, we have a2 = “coin”, sa2 = {head, tail},

u(head) = $1.50

u(tail) = $0.5

and

Pr(sa2 = head) = 0.5

Pr(sa2 = tail) = 0.5

• Thus the expected utility is:

E(u(sa2)) = 0.5× 1.5 + 0.5× 0.5

= 1

cisc3410-fall2012-parsons-lect09 96



• Action a3, rolling the die, can be analysed in a similar way,
giving:

E(u(sa3)) = 1.17

• Choosing to roll the die is the rational choice.
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Decisions in the WW

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench
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• Actions have a range of outcomes.

• Forward has some probability of moving sideways

– Not so silly with a robot

• Probabilities across action outcomes.

– Given an action, probability of getting to some states

• Utilities for states.
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• Given what we know about Bayesian networks, we can clearly
deal with complex situations as far as probability is concerned.

B E

J

A

M

• Should I go home given that John calls and Mary doesn’t?
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• But what about more complex decisions?

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

•What is the best sequence of actions to carry out to get the gold?
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Summary

• This lecture looked at dealing with uncertainty.

– Non-deterministic environments

• It looked at handling this uncertainty using probability and then
went on to look at how decision theory allows us to decide what
to do.

•We now know how to make a decision about the best action to
carry out.

– But we can only choose one action at a time.

• Next time we’ll look at sequential decision problems.
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