
MAKING COMPLEX DECISIONS

Introduction

• Last week we looked at how an agent might make a decision
under uncertainty.

• Problem structure:

– Set of non-deterministic actions.

– Resulting states have utilities associated with them.

•We use probability + utility theory (= decision theory) to
establish the best choice of action.

• This week wee’ll look at more complex situations.

• But first we’ll recap.

cisc3410-fall2012-parsons-lect10 2

Simple decisions

• Consider an agent with a set of possible actions A available to it.

• Each a ∈ A has a set of possible outcomes sa:

s1

s

a

a

1

2

s
s s

s

s

2

3 4

5

6

• For the outcomes sa of each action each a, the agent can calculate:

E(u(sa)) =
∑

s′∈sa

u(s′).P(sa = s′)

cisc3410-fall2012-parsons-lect10 3

• A rational agent will then choose a∗ such that:

a∗ = argmax
a∈A

∑

s′∈sa

u(s′).P(sa = s′)

• That is it picks the action that has the greatest expected utility.

• Here “rational” means “rational in the sense of maximising
expected utility”.

• As we will see, there are other ways to define “rational”, but the
MEU definition is the most widely accepted at this time.

cisc3410-fall2012-parsons-lect10 4

An example

• As an example, consider an agent which has to choose between
tossing a coin, rolling a die, or receiving a payoff of $ 1.

• If the coin is chosen, then the agent gets $1.50 a head and $0.5 for
a tail.

• If the die is chosen, the agent gets $5 if a six is rolled, $1 if a two
or three is rolled, and nothing otherwise.

•What is the rational choice, assuming that the agent’s
preferences are (for once) modelled by monetary value?

cisc3410-fall2012-parsons-lect10 5

•Well, we need to calculate the expected outcome of each choice.

• For doing nothing, we have:

a1 = “receive payoff”,

sa1 = {get $1},

u(get $1) = 1, and

Pr(sa1 = get $1) = 1.

• Thus:
E(u(sa1)) = 1

cisc3410-fall2012-parsons-lect10 6

• If the coin is chosen, we have a2 = “coin”, sa2 = {head, tail},

u(head) = $1.50

u(tail) = $0.5

and

Pr(sa2 = head) = 0.5

Pr(sa2 = tail) = 0.5

• Thus the expected utility is:

E(u(sa2)) = 0.5× 1.5 + 0.5× 0.5

= 1

cisc3410-fall2012-parsons-lect10 7

• Action a3, rolling the die, can be analysed in a similar way,
giving:

E(u(sa3)) = 1.17

• Choosing to roll the die is the rational choice.

cisc3410-fall2012-parsons-lect10 8

Other kinds of “rational”

• There are other criteria for decision-making than maximising
expected utility.

• One approach is to look at the option which has the least-bad
worst outcome.

• This maximin criterion can be formalised in the same framework
as MEU, making the rational (in this sense) action:

a∗ = argmax
a∈A
{min

s′∈sa
u(s′)}

• Its effect is to ignore the probability of outcomes and concentrate
on optimising the worst case outcome.

cisc3410-fall2012-parsons-lect10 9

• The opposite attitude, that of optimistic risk-seeker, is captured
by the maximax criterion:

a∗ = argmax
a∈A
{max

s′∈sa
u(s′)}

• This will ignore possible bad outcomes and just focus on the best
outcome of each action.

cisc3410-fall2012-parsons-lect10 10

Sequential decision problems

• These approaches give us a battery of techniques to apply to
individual decisions by agents.

• However, they aren’t really sufficient.

• Agents aren’t usually in the business of taking single decisions

– Life is a series of decisions.

The best overall result is not necessarily obtained by a greedy
approach to a series of decisions.

• The current best option isn’t the best thing in the long-run.

cisc3410-fall2012-parsons-lect10 11

• Otherwise I’d only ever eat chocolate cake.

cisc3410-fall2012-parsons-lect10 12

• Need to think about sequential decision problemswhere the agent’s
utility depends on a sequence of decisions.

cisc3410-fall2012-parsons-lect10 13

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

• The agent has to pick a sequence of actions.

A(s) = {Up,Down, Left,Right}

for all states s.

• The world is fully observable. End states have values +1 or −1.

cisc3410-fall2012-parsons-lect10 14

• If the world were deterministic, the choice of actions would be
easy here.

Up,Up,Right,Right,Right

• But actions are stochastic.

• 80% of the time the agent moves as intended, but 20% of the time
the agent moves perpendicular to the intended direction.

Half the time to the left, half the time to the right. The agent
doesn’t move if it hits a wall.

• So Up,Up,Right,Right,Right succeeds with probability:

0.85 = 0.32768

• (Also a small chance of going around the obstacle the other way.)

cisc3410-fall2012-parsons-lect10 15

•We can write a transition model to describe these actions.

• Since the actions are stochastic, the model looks like:

P(s′|s, a)

where a is the action that takes the agent from s to s′.

• Transitions are assumed to be Markovian.

• So, we could write a large set of probability tables that would
describe all the possible actions executed in all the possible
states.

This would completely specify the actions.

cisc3410-fall2012-parsons-lect10 16

• The full description of the problem also has to include the utility
function.

• This is defined over sequences of states.

•We will assume that in each state s the agent receives a reward
R(s).

• In general, this may be positive or negative.

• Here we will set the reward for non-terminal states to −0.04.

•We will assume that the utility of a run is the sum of the utilities
of states, so the −0.04 is an incentive to take fewer steps to get to
the terminal state.

(You can also think of it as the cost of an action).

cisc3410-fall2012-parsons-lect10 17

Markov decision process

• The overall problem the agent faces here is a Markov decision
process (MDP)

• That is any fully observable non-deterministic environment with
a Markovian transition model and additive rewards.

•Mathematically we have:

– A set of states s ∈ S with an initial state s0.

– A set of actions A(s) in each state.

– A transition model P(s′|s, a); and

– A reward function R(s).

cisc3410-fall2012-parsons-lect10 18

•What does a solution to an MDP look like?

cisc3410-fall2012-parsons-lect10 19

• A solution is a policy, which we write as π.

• This is a choice of action for every state.

– that way if we get off track, we still know what to do.

• In any state s, π(s) identifies what action to take.

•We already met the idea of a policy in Lecture 8.

cisc3410-fall2012-parsons-lect10 20

• Naturally we’d prefer not just any policy but the optimum policy.

– But how to find it?

• Need to compare policies by the reward they generate.

• Since actions are stochastic, policies won’t give the same reward
every time.

– So compare the expected value.

• The optimum policy π∗ is the policy with the highest expected
value.

• At every stage the agent should do π∗(s).

cisc3410-fall2012-parsons-lect10 21

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

(a) Optimal policy for the original problem.

(b) Optimal policies for different values of R(s).

cisc3410-fall2012-parsons-lect10 22

• R(s) ≤ −1.6284, life is painful so the agent heads for the exit, even
if is a bad state.

• −0.4278 ≤ R(s) ≤ −0.0850, life is unpleasant so the agent heads
for the +1 state and is prepared to risk falling into the −1 state.

• −0.0221 < R(s) < 0, life isn’t so bad, and the optimal policy
doesn’t take any risks.

• R(s) > 0, the agent doesn’t want to leave.

cisc3410-fall2012-parsons-lect10 23

How utilities are calculated

• So far we have assumed that utilities are summed along a run.

– Not the only way.

• In general we need to compute Ur([s0, s1, . . . , sn]).

• Can consider finite and infinite horizons.

– Is it “game over” at some point?

• Turns out that infinite horizons are mostly easier to deal with.

– That is what we will use.

• Also have to consider whether utilities are stationary or
non-stationary.

– Does the same state always have the same value?

cisc3410-fall2012-parsons-lect10 24

• Normally if we prefer one state to another

– Passing the mid-term to failing it

when we have the exam, today or next week, is irrelevant.

• So we say that utilities are stationary.

cisc3410-fall2012-parsons-lect10 25

An aside

• Assuming that utilties are stationary makes no sense over the
long term.

– How many people like exactly the same things now that they
liked 10 years ago?

– Or 20 years ago?

• However, it may be reasonable that an agent’s utilities stay
somewhat fixed over a short period.

cisc3410-fall2012-parsons-lect10 26

Back to sequential decisions

•With stationary utilities, there are two ways to establish
Ur([s0, s1, . . . , sn]) from R(s).

• Additive rewards:

Ur([s0, s1, . . . , sn]) = R(s0) + R(s1) + . . . + R(sn)

as above.

• Discounted rewards:

Ur([s0, s1, . . . , sn]) = R(s0) + γR(s1) + . . . + γ
nR(sn)

where the discount factor γ is a number between 0 and 1.

• The discount factor models the preference of the agent for
current over future rewards.

cisc3410-fall2012-parsons-lect10 27

• There is an issue with infinite sequences with additive,
undiscounted rewards.

– What will the utility of a policy be?

cisc3410-fall2012-parsons-lect10 28

• There is an issue with infinite sequences with additive,
undiscounted rewards.

– What will the utility of a policy be?

• ∞ or −∞.

• This is problematic if we want to compare policies.

• Some solutions as follows.

cisc3410-fall2012-parsons-lect10 29

• Proper policies always end up in a terminal state eventually.

Thus they have a finite expected utility.

cisc3410-fall2012-parsons-lect10 30

•We can compute the average reward per time step.

cisc3410-fall2012-parsons-lect10 31

•With discounted rewards the utility of an infinite sequence is
finite:

Ur([s0, s1, . . . , sn]) =
∞
∑

t=0
γ

tR(st)

≤
∞
∑

t=0
γ

tRmax

≤
Rmax

(1− γ)

where 0 ≤ γ < 1 and rewards are bounded by ±Rmax

cisc3410-fall2012-parsons-lect10 32

Optimal policies

•With discounted rewards we compare policies by computing
their expected values.

• The expected utility of executing π starting in s is given by:

Uπ(s) = E

∞
∑

t=0
γ

tR(St)

where St is the state the agent gets to at time t.

• St is a random variable and we compute the probability of all its
values by looking at all the runs which end up there after t steps.

• The optimal policy is then:

π
∗ = argmax

π
Uπ(s)

and it turns out that this is independent of the state the agent
starts in.

cisc3410-fall2012-parsons-lect10 33

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

• Here we have the values of states

Uπ∗(s)

if the agent executes an optimal policy

cisc3410-fall2012-parsons-lect10 34

• If we have these values, the agent has a simple decision process

• It just picks the action a that maximises the expected utility of
the next state:

π
∗(s) = arg max

a∈A(s)

∑

s′
P(s′|s, a)Uπ∗(s′)

cisc3410-fall2012-parsons-lect10 35

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

–1

+1

1

2

3

1 2 3 4

cisc3410-fall2012-parsons-lect10 36

• The big question is how to compute Uπ∗(s).

cisc3410-fall2012-parsons-lect10 37

Value iteration

• The key to computing the utility of a state is the Bellman equation:

U(s) = R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)U(s′)

•We already met this (in Lecture 8) in a form suitable for
deterministic actions.

• This version says the utility of
a state is the reward for being
in that state plus the expected
discounted reward of being in
the next state, assuming the
agent picks the optimal action.

cisc3410-fall2012-parsons-lect10 38

• There will be a set of Bellman equations, one for each state.

•We need to solve this set of (non-linear) equations.

– Hard

Because of the non-linearity.

• Luckily an iterative approach works.

– Same basic process as we saw in Lecture 8.

cisc3410-fall2012-parsons-lect10 39

• Start with arbitrary values for states and apply the Bellman
update:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)Ui(s

′)

simultaneously to all the states.

• Continue until the values of states do not change.

• After an infinite number of applications, the values will
converge on the optimal values.

• In practice we stop updating once the values of all states stop
changing significantly.

cisc3410-fall2012-parsons-lect10 40

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

• How the values of states change as updates occur.

cisc3410-fall2012-parsons-lect10 41

• Intuition: works for the same reason as the deterministic case.

– Eventually the right value propagates back from the goal.

cisc3410-fall2012-parsons-lect10 42

Policy iteration

• Rather than compute optimal utility values, policy iteration looks
through the space of possible policies.

• Starting from some initial policy π0 there are two steps:

– Policy evaluation

– Policy improvement

• These steps are then repeated.

cisc3410-fall2012-parsons-lect10 43

• Policy evaluation

Given a policy πi, calculate Ui = Uπi.

• Policy improvement

Calculate a new policy πi+1 by applying:

πi+1(s) = arg max
a∈A(s)

∑

s′
P(s′|s, a)Ui(s

′)

• At each iteration, improvement is based on our better
understanding of the utility of each state.

cisc3410-fall2012-parsons-lect10 44

• The iteration will terminate when there is no improvement in
utility from one iteration to the next.

• At this point the utility Ui is a fixed point of the Bellman update
and so πi must be optimal.

cisc3410-fall2012-parsons-lect10 45

• How do we calculate the utility of each step given the policy πi?

• Turns out not to be so hard.

• Given a policy, the choice of action in a given state is fixed (that
is what a policy tells us) so:

Ui(s) = R(s) + γ
∑

s′
P(s′|s, πi(s))Ui(s

′)

• Again there are lots of simultaneous equations, but now they are
linear (no max) and so standard linear algebra solutions will
work.

cisc3410-fall2012-parsons-lect10 46

Bellman redux

• The Bellman equation(s)/update are widely used.

• D. Romer, It’s Fourth Down and What Does the Bellman
Equation Say? A Dynamic Programming Analysis of Football
Strategy, NBER Working Paper No. 9024, June 2002

cisc3410-fall2012-parsons-lect10 47

This paper uses play-by-play accounts of virtually all
regular season National Football League games for
1998-2000 to analyze teams’ choices on fourth down
between trying for a first down and kicking. Dynamic
programming is used to estimate the values of possessing
the ball at different points on the field. These estimates are
combined with data on the results of kicks and
conventional plays to estimate the average payoffs to
kicking and going for it under different circumstances.
Examination of teams’ actual decisions shows systematic,
overwhelmingly statistically significant, and quantitatively
large departures from the decisions the
dynamic-programming analysis implies are preferable.

cisc3410-fall2012-parsons-lect10 48

Partially observable MDPs

•MDPs made the assumption that the environment was fully
observable.

– Agent always knows what state it is in.

• The optimal policy only depends on the current state.

• Not the case in the real world.

– We only have a belief about the current state.

• POMDPs extend the model to deal with partial observability.

cisc3410-fall2012-parsons-lect10 49

• Basic addition to the MDP model is the sensormodel:

P(e|s)

probability of perceiving e in state s.

• As a result of noise in the sensor model, the agent only has a
belief about which state it is in.

• Probability distribution over the possible states.

cisc3410-fall2012-parsons-lect10 50

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

P(s1,1) = 0.05,P(s1,2) = 0.01, . . .

cisc3410-fall2012-parsons-lect10 51

• If b(s)was the distribution before an action and an observation,
then afterwards the distribution is:

b′(s′) = αP(e|s′)
∑

s
P(s′|s, a)b(s)

• Everything in a POMDP hinges on the belief state b.

– Including the optimal action.

• Indeed, the optimal policy is a mapping π∗(b) from beliefs to
actions.

“If you think you are next to the wall, turn left”

• The agent executes the optimal action given its beliefs, receives a
percept e and then recomputes the belief state.

cisc3410-fall2012-parsons-lect10 52

• The big issue in solving POMDPs is that beliefs are continuous.

•When we solved MDPs, we could search through the set of
possible actions in each state to find the best.

• To solve a POMDP, we need to look through the possible actions
for each belief state.

But belief is continuous, so there are a lot of belief states.

• Exact solutions to POMDPs are intractable for even small
problems (like the example we have been using).

• Need (once again) to use approximate techniques.

cisc3410-fall2012-parsons-lect10 53

Reinforcement learning

• Remember this world which we solved as an MDP:

–1

+1

1

2

3

1 2 3 4 1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

cisc3410-fall2012-parsons-lect10 54

• In passive learning the agent’s policy is fixed:

– In state s it always executes π(s).

• It has to learn the utility function Uπ(s).

• Comparing with the MDP case, the agent doesn’t know the
transition model:

P(s′|s, a)

and it doesn’t know the reward function

R(s)

• How can it learn them?

cisc3410-fall2012-parsons-lect10 55

• It learns them by carrying out runs through the environment.

–1

+1

1

2

3

1 2 3 4

• A run is a sequence of states and actions that continues until the
agent reaches the terminal state:

(1, 1)−0.04→ (1, 2)−0.04→ (1, 3)−0.04→ (1, 2)−0.04→ (1, 3)−0.04→

• Note that we have reward as well.

cisc3410-fall2012-parsons-lect10 56

• As the agent moves it can calculate a sample estimate of
P(s′|s, π(s))

– Each time it moves it creates a new sample for one state.

• Each reward is a contribution to the computation of utility.

cisc3410-fall2012-parsons-lect10 57

•We could estimate the utility of a state by the rewards generated
along the run from that state.

– Direct utility estimation.

• Thus a sample reward for (1, 1) from the run above is the sum of
the rewards all the way to a goal state.

• The same run will produce two samples for (1, 2) and (1, 3).

• You can do the calculation with or without discount.

cisc3410-fall2012-parsons-lect10 58

Adaptive dynamic programming

•We can improve on the direct estimation by remembering the
Bellman equation for a fixed policy:

Uπ(s) = R(s) + γ
∑

s′
P(s′|s, π(s))Uπ(s′)

• The utility of a state is the
reward for being in that state
plus the expected discounted
reward of being in the next
state.

• This is the formula from page
46.

cisc3410-fall2012-parsons-lect10 59

• Since we are using the fixed policy version of the Bellman
equation we don’t have the max that makes the original so hard
to solve.

• Can just plug results into an LP solver

– As we discussed when talking about policy iteration.

• Can also use value iteration, using:

Ui+1(s)← R(s) + γ
∑

s′
P(s′|s, π(s))Ui(s

′)

to update utilities.

cisc3410-fall2012-parsons-lect10 60

• Results:

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)
(1,3)

(3,2)

(3,3)
(4,3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

R
M

S
er

ro
r

in
 u

til
ity

Number of trials

cisc3410-fall2012-parsons-lect10 61

• Now, to get the utilities, the agent started with a fixed policy, so
it always knew what action to take.

• It used this to get utilities.

• Having gotten the utilities, it could use them to choose actions.

– Just picks the action with the best expected utility in a given
state.

• However, there is a problem with doing this.

•What is it?

cisc3410-fall2012-parsons-lect10 62

•Might not yet have experienced the bad effects of an action:

• Textbook uses the example of successfully running a red light.

• Of course, this kind of over-reliance on not-full-explored
state/action spaces is what people do all the time.

cisc3410-fall2012-parsons-lect10 63

• In addition, as the textbook points out, there are ways to get
around this.

• There is no way to be sure that the action your reinforcement
learner is picking doesn’t have possible bad outcomes.

• But there are ways to try to mitigate the issue.

cisc3410-fall2012-parsons-lect10 64

Active reinforcement learning

• The passive reinforcement learning agent is told what to do.

– Fixed policy

• An active reinforcement learning agent must decide what to do.

•We’ll think about how to do this by adapting the passive learner.

•We can use exactly the same approach to estimating the
transition function.

– Sample average of the transitions we observe.

• But computing utilities is more complex.

cisc3410-fall2012-parsons-lect10 65

•When we had a policy, we could use the simple version of the
Bellman equation:

Uπ(s) = R(s) + γ
∑

s′
P(s′|s, π(s))Uπ(s′)

•When we have to choose actions, we need to solve the full
Bellman equation:

U(s) = R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)U(s′)

with its pesky max.

•What to do?

cisc3410-fall2012-parsons-lect10 66

•Well, we know what to do, we use value iteration.

• At any stage, we can run:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑

s′
P(s′|s, a)Ui(s

′)

to stability to compute a new set of utilities.

cisc3410-fall2012-parsons-lect10 67

• Deciding what to do, what action to take, is the next issue.

• Normally after running value iteration we would choose the
action with the highest expected utility.

– Greedy agent

• This turns out not to be so great an idea.

cisc3410-fall2012-parsons-lect10 68

• Typically a greedy agent will not learn the optimal policy:

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400 450 500

R
M

S
er

ro
r,

 p
ol

ic
y

lo
ss

Number of trials

RMS error
Policy loss

1 2 3

1

2

3

–1

+1

4

cisc3410-fall2012-parsons-lect10 69

• The issue is that once the agent finds a run that leads to a good
reward, it tends to stick to it.

– It stops exploring.

•May never find the best action for a given state.

cisc3410-fall2012-parsons-lect10 70

cisc3410-fall2012-parsons-lect10 71

• To do better we can force exploration using, for example, the
ǫ-greedy approach.

• If a∗t is the action we compute gives highest utility, ǫ-greedy
action selection:

at =

a∗t with probability 1− ǫ

random action with probability ǫ

for some 0 < ǫ < 1.

• This can be slow to converge.

cisc3410-fall2012-parsons-lect10 72

• A better approach is to change the estimated utility assigned to
states in value iteration.

• For example we can use:

Ui+1(s)← R(s) + γ max
a∈A(s)

f

∑

s′
P(s′|s, a)Ui(s

′),N(s, a)

where N(s, a) counts how many times we have done a in s, and
f (u, n) provides an exploration-happy estimate of the utility of a
state.

• For example:

f (u, n) =

R+ if n < Ne

u otherwise

R+ is an optimistic reward, and Ne is the number of times we
want the agent to be forced to pick an action in every state.

cisc3410-fall2012-parsons-lect10 73

Q-learning

• Q-learning is a model-free approach to reinforcement learning.

– It doesn’t need to learn P(s′|s, a).

• Revolves around the notion of Q(s, a), which denotes the value of
doing a in s.

U(s) = maxa Q(s, a)

•We can write:

Q(s, a) = R(s) + γ
∑

s′
P(s′|s, a)maxa′Q(s′, a′)

and we could do value-iteration style updates on this.

(Wouldn’t be model-free)

cisc3410-fall2012-parsons-lect10 74

• However, we can write the update rule as:

Q(s, a)← Q(s, a) + α(R(s) + γmax
a′

Q(s′, a′)− Q(s, a))

and recalculate everytime that a is executed in s and takes the
agent to s′.

• α is a learning rate, just like the learning rate in linear regression.

– Controls how quickly we update the Q-value when we have
new information.

cisc3410-fall2012-parsons-lect10 75

Summary

• Today we looked at practical decision making for agents.

– Practical in the sense that agents will need this kind of
decision making to do the things they need to do.

•We looked in detail at solutions for techniques that work in fully
observable worlds

– MDPs

•We also briefly mentioned the difficulties of extending this work
to partially observable worlds.

•We also looked at how reinforcement learning could be used to
solve problems for which we don’t have action models.

cisc3410-fall2012-parsons-lect10 76

