
LOCALIZATION



Today

• Last time we looked at perception, and before that we looked at
motion.

• This time we’ll look at how using models of motion and
perception we can figure out where the robot is.
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Localization
•We started this course with three questions:

?

– Where am I ?
– Where am I going ?
– How do I get there ?

•We are now at a point where we can answer the first of these.
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• The basic localization task is to compute current location and
orientation (pose) given observations.

– What constitues a pose depends on what kind of map we
have.

– But roughly speaking it is (xI, yI, θ).
– The same things we worried about in the motion model

• Do we need to do any more than just use odometry?

– After all, that seemed to work okay for the various lab
exercises.
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• In general odometry doesn’t hold up well over long distances.

• Range error: integrated path length (distance) of the robots
movement

– Sum of the wheel movements

• Turn error: similar to range error, but for turns

– Difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error
in the robot’s angular orientation.

• Over long periods of time, turn and drift errors far outweigh
range errors!
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• A simple error model based on the kinematics predicts:
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•Which is worse when we turn:
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• Borenstein characterised this error:

• Look familiar?
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• Error distribution:
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• Leading to:

• Images from Dieter Fox in his CMU days.
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• The problems were memorably illustrated by:

Flakey was custom-built at SRI.
Differential drive gave it a
maximum speed of 2 feet per
second.

Sensors included a ring of 12
sonar, wheel encoders, video
camera and a laser.
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• If odometry alone doesn’t help, what about GPS?

• Non-military GPS is not accurate enough to work on its own.

• Doesn’t tend to work great indoors.
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• Instead we try to use sensor data to identify where we are on a
map.

• It is tempting to try and triangulate.

• But doing this is too prone to error.

– Sensor noise.
– Sensor aliasing.

• You get better results if you:

– Combine data from multiple sensors.
– Take into account previous estimates of where the robot is.
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• General schema:
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• Here A is action, S is pose and O is observation.

• The point is that position at one time depends on position at the
previous time.
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The localization problem(s)

• There are a number of flavors of localization:

– Position tracking
– Global localization
– Kidnapped robot problem
– Multi-robot localization

• All are hard, but variations of the technique we will look at helps
to solve all of them.
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• General schema (again):
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• Here A is action, S is pose and O is observation.

• The point is that position at one time depends on position at the
previous time.
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• The pose at time t depends upon:

– The pose at time t − 1, and
– The action at time t − 1.

• The pose at time t determines the observation at time t.

• So, if we know the pose we can say what the observation is.

• But this is backwards. . .

• To help us out of this bind we need to bring in probabilities (as
mentioned before they are also helpful because sensor data is
noisy).
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Probability theory

• Let’s recap some probability theory

•We start with a sample space Ω.

• For instance, Ω for the action of rolling a die would be
{1, 2, 3, 4, 5, 6}.
• Subsets of Ω then correspond to particular events. The set
{2, 4, 6} corresponds to the event of rolling an even number.

•We use S to denote the set of all possible events:

S = 2Ω

• It is sometimes helpful to think of the sample space in terms of
Venn diagrams—indeed all probability calculations can be
carried out in this way.
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• A probability measure is a function:

Pr : S 7→ [0, 1]

such that:

Pr(∅) = 0

Pr(Ω) = 1

Pr(E ∪ F) = Pr(E) + Pr(F),whenever E ∩ F = ∅

• Saying E ∩ F = ∅ is the same as saying that E and F cannot occur
together.

• They are thus disjoint or exclusive.

• The meaning of a probability is somewhat fraught; both
frequency and subjective belief (Bayesian) interpretations are
problematic.
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• If the occurrence of an event E has no effect on the occurrence of
an event F, then the two are said to be independent.

• An example of two independent events are the throwing of a 2
on the first roll of a die, and a 3 on the second.

• If E and F are independent, then:

Pr(E ∩ F) = Pr(E).Pr(F)

•When E and F are not independent, we need to use:

Pr(E ∩ F) = Pr(E).Pr(F|E)

where Pr(F|E) is the conditional probability of F given that E is
known to have occurred.

• To see how Pr(F) and Pr(F|E) differ, consider F is the event “a 2
is thrown” and E is the event “the number is even”.
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•We can calculate conditional probabilities from:

Pr(F|E) =
Pr(E ∩ F)

Pr(E)

Pr(E|F) =
Pr(E ∩ F)

Pr(F)

which, admittedly is rather circular.

•We can combine these two identities to obtain Bayes’ rule:

Pr(F|E) =
Pr(E|F) Pr(F)

Pr(E)

• Also of use is Jeffrey’s rule:

Pr(F) = Pr(F|E) Pr(E) + Pr(F|¬E) Pr(¬E)

•More general versions are appropriate when considering events
with several different possible outcomes.
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Bayes Filtering

• The technique we will use for localization is a form of Bayes filter.

• The key idea is that we calculate a probability distribution over the
set of possible poses.

• That is we compute the probability of each pose that is in the set
of all possible poses.

•We do this informed by all the data that we have.

• This is what the paper means by:

estimate the posterior probability density over the state
space conditioned on the data.
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•We call the probability that we calulate the belief.

•We denote the belief by:

Bel(st) = Pr(xt|d0,...,t)

where d0,...,t is all the data from time 0 to t.

• Two kinds of data are important:

– Observations ot

– Actions at

just as in the general scheme.

• Note: the scheme on pages 14 and 16 uses S for state A for action
and O for observation, just as the textbook does. The Fox paper
uses u for action and y for observation.

• From here on I’ll use s for pose, a for action and o for observation.
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•Without loss of generality we assume actions and observations
alternate:

Bel(st) = Pr(st|ot, at−1, ot−1, at−2, . . . , o0)

•We figure out this belief by updating recursively.

•We can use Bayes’ rule to write the above as:

Bel(st) =
Pr(ot|st, at−1, . . . , o0) Pr(st|at−1, . . . , o0)

Pr(ot|at−1, . . . , o0)

which reduces to:

Bel(st) = η Pr(ot|st, at−1, . . . , o0) Pr(st|at−1, . . . , o0)

since the denominator is constant relative to st.
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• Now, the basic principle behind using Bayes filters is that if we
know the current state, then future states do not depend on past
states.

• The Markov assumption.

• In this case the Markov assumption says that

Pr(ot|st, at−1, . . . , o0)

reduces to:
Pr(ot|st)

and the big expression can be written as:

Bel(st) = η Pr(ot|st) Pr(st|at−1, . . . , o0)
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• A little more maths gets us a recursive equation for the belief.

•We integrate over the state at time t − 1:

Bel(st) = η Pr(ot|st)
∫

Pr(st|st−1, at−1, . . . , o0) Pr(st−1|at−1, . . . , o0)dst−1

• Then again exploiting the Markov assumption we reduce
Pr(st−1|at−1, . . . , o0) and get:

Bel(st) = η Pr(ot|st)
∫

Pr(st|st−1, at−1) Pr(st−1|at−1, . . . , o0)dst−1

• Finally we get:

Bel(st) = η Pr(ot|st)
∫

Pr(st|st−1, at−1)Bel(st−1)dst−1
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• This allows us to calculate the belief recursively based on:

– The next state density or motion model

Pr(st|st−1, at−1)

– The sensor model
Pr(ot|st)

• In other words, belief about the current location is a function of
belief about the previous location, what the robot did, and what
the robot can see.
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• The motion model, obviously enough, predicts how the robot
moves.

• The model should take into account the fact that the motion is
uncertain.
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• The sensor model captures both the landmarks the robot can see,
and the lack of precise knowledge in where the robot must be to
see them.

• ot in the above is the distance the sensor says the object is away
from the robot, dt is the real distance.
• The map tells us how far the object is, dt, and the graph tells us

how likely this is.
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• Overall, the filtering procedure works to reduce uncertainty of
location when landmarks are observed.

• Diagram assumes that landmarks are identifiable—otherwise, Bel
is multimodal
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Models of belief

• Single hypothesis,
continuous distribution

•Multiple hypothesis,
continuous distribution

•Multiple hypothesis,
discrete distribution

• Topological map, discrete
distribution
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• Handling the kind of probability distributions that the Bayes
filter requires is a bit tricky.

• So we improvise.

• Three different approaches:

– Assume everything is Gaussian.
– Make the environment discrete.
– Take a sampling approach.

• All are used with differing degrees of success.
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• Assuming Gaussian distributions gives us Kalman filters.

– Fast and accurate.
– Only really work for position tracking.

• A discrete environment gives us Markov localization.

– Simple.
– Accuracy requires huge memory.

•We’ll start by looking at Markov localization.
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Markov Localization
•We start with a map that breaks the world into a grid:

• There are many ways to do this, and we’ll talk about some of
them in the next lecture.
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• Initally we have a uniform distribution over the possible
locations.

• For every observation, for every location, we check what we
observe against the map.

– Apply the sensor model to find out how likely the
observation is from that location.

– Update the probability of the location.

• Then we normalize the probabilities — make sure they all add
up to 1.
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• For every motion, for every location

– Apply the sensor model to find out what new locations are
how likely.

– Update the probability of those locations.

• Then we normalize the probabilities — make sure they all add
up to 1.
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•We repeat this process for every item of sensor data and every
motion.
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• Crudely what happens:
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• How the grid updates:
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• After 1 scan.

•W. Burgard
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• After 2 scans.

•W. Burgard
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• After 3 scans.

•W. Burgard
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• After 13 scans.

•W. Burgard
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• After 21 scans.

•W. Burgard
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Topological maps

• Another way to make the map discrete is to use a topological
map.

• Treat it the same way as the grid map.

• Fewer locations is good and bad.

cisc3415-fall2011-parsons-lect04 46



Improving on Markov Localization

• The problem with Markov localization is that if the area is big,
we need to consider a lot of possible locations.

– Memory and processor intensive

• Particle filters use sampling techniques to reduce the number of
possible positions, and hence the number of calculations.

• The sampling approach is what we will consider next.

• Rather than compute the whole distribution, we pick possible
locations (samples) and do the calculations for them.

• This can work with surprisingly few samples (or particles).
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Particle filter

• Also known as “Monte-Carlo Localization”.

•We approximate Bel(st)by a set of samples:

Bel(st) ≈ {s(i)
t ,w

(i)
t }i=1,...,m

• Each s(i)
t is a possible pose, and each w(i)

t is the probability of that
pose (also called an importance factor).

• Initially we have a set of samples (typically uniform) that give us
Bel(so).

• Then we update with the following algorithm.
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st+1 = ∅

for j = 1 to m
// apply the motion model

generate a new sample s(j)
t+1 from s(j)

t , at and Pr(st+1|st, at)
// apply the sensor model

compute the weight w(j)
t+1 = Pr(ot+1|st+1)

// pick points randomly but biased by their weight
for j = 1 to m

pick a random s(i)
t+1 from st+1 according to w(1)

t+1, . . . ,w
(m)
t+1

normalize wt+1 in st+1

return st+1
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• And that is all it takes.
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• How does this work?
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Effectiveness

• All localization is limited by the noise in sensors:

– There are techniques for reducing noise by modelling
spurious measurements.

– Cannot remove all uncertainty.

• Discrete, grid-based approaches can reduce average error below
5cm.

– However this is hard to do in real-time.
– Requires huge amounts of memory.

• Particle filters with feasible sample sizes ( ≈ 1000) have
comparable error rates.

cisc3415-fall2011-parsons-lect04 52



•With much smaller numbers of particles ( ≈ 100) we have
average errors of around 10cm.

• This is sufficient for many tasks.
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Kidnapped robot

•Markov localization has no problem with the kidnapped robot

– Always considers all possible poses.

• A well-localized particle filter cannot easily recover from
kidnapping.

• Solution: seed the particle set with some random particles.

– simple: fixed percentage of particles.
– sensor resetting: larger number of particles the less

well-localized the robot is.
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Sensor resetting

averageProb = totalProb/PARTICLES;

case SENSOR_RESETTING:

return (int)floor(PARTICLES *
max(0, (1 - (averageProb/P_THRESHOLD))));

break;

case SENSOR_RESETTING_PLUS:

longAverageProb
+= ETA_LONG * (averageProb - longAverageProb);

shortAverageProb
+= ETA_SHORT * (averageProb - shortAverageProb);

return (int)floor(PARTICLES

* max(0,(1 - NU * (shortAverageProb/longAverageProb))));
break;
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Summary

• This lecture looked at the problem of localization

– How we have the robot figure out where it is.

•We discussed why odometry is not sufficient.

•We then described probabilistic localization techniques,
concentrating on:

– Markov localization
– Particle filters

• Next lab we’ll start to play with localization.
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