
NAVIGATION

Today

• Today we will finish up the material for the course.

•We’ll be looking at navigation.

– How a robot gets around the world.

cisc3415-fall2011-parsons-lect06 2

What counts as navigation

• Navigation is concerned with how a robot gets around the
world.

– So what is new?

•More than just blundering about using dead reckoning.

• Assume that the robot:

– Knows where it is.
– Knows where it is going.

• Concerned with getting from one place to another.

cisc3415-fall2011-parsons-lect06 3

• Distinguish two kinds of navigation

– Global navigation
– Local navigation

cisc3415-fall2011-parsons-lect06 4

• Global navigation is about deciding how to get from some start
point to a goal point.

• The robot plans in some sense.

•We will look at methods for path planning.

• In short, the robot comes up with something like the “plan” you
used in the last lab.

– A sequence of way points

•We’ll look at a couple of different methods that are appropriate
for different map representations.

– Remember them?

cisc3415-fall2011-parsons-lect06 5

• Local navigation is about obstacle avoidance.

– If there are objects in the way, make sure you don’t hit them.

• Range of different approaches depending on what kind of
information we have about the world.

– Depends on sensors

cisc3415-fall2011-parsons-lect06 6

• One way to think about the difference between the two is in
terms of the relationship between the robot’s start point and
the goal point.

• If there is a clear line of sight between the start point and the goal
then we are into obstacle avoidance.

– Just avoiding some debris that isn’t on the map

cisc3415-fall2011-parsons-lect06 7

• However, if there is no line of sight from start to goal:

then we have to find a path.

• Typically path segments will be between two points between
which there is a line of sight.

– Waypoints

cisc3415-fall2011-parsons-lect06 8

Visibility graph

• Direct implementation of line-of-sight.

• Connect up all the vertices in the map.

cisc3415-fall2011-parsons-lect06 9

• Given the line segments, we can find the shortest path from
start to goal.

• Can then translate the path into a series of waypoints.

– Waypoints are the end points of the line segments.

• Given the visibility graph above, there is an obvious problem
with using the lines as a guide for where the robot should go.

•What is it?

cisc3415-fall2011-parsons-lect06 10

• Routes at the moment run arbitrarily close to the vertices of
objects.

– Problems with collisions

• Fix this by expanding objects by enough that the robot will still
clear them.

– More than half the diameter of the robot.

cisc3415-fall2011-parsons-lect06 11

Voronoi diagram

• A Voronoi diagram is a way to divide up a plane (a map).

• Given a set of points P, a Voronoi diagram is a set of polygons
such that the points inside each polygon are closer to one
member of P than any other.

cisc3415-fall2011-parsons-lect06 12

• Can extend this to cases where P is a set of objects.

• Treat the line segments exactly like the edges in the visibility
graph.

cisc3415-fall2011-parsons-lect06 13

• The lines are not necessarily lines of sight

– As above they may bend.

• However, they are object free, and so can be followed just like
lines of sight can.

cisc3415-fall2011-parsons-lect06 14

• Voronoi diagrams also have a nice property in terms of
path-following

– That is when you get the robot to follow the “plan”.

• A robot that is maximising its distance from objects will follow
the lines in the Voronoi diagram.
Exactly what you did in the corridor following example.

•Means that we can again reduce the path to a set of waypoints.

– Head to the next waypoint while maximising distance from
objects.

cisc3415-fall2011-parsons-lect06 15

Asides

• Voronoi diagrams work in 3D also:

cisc3415-fall2011-parsons-lect06 16

• They were also famously used by John Snow to identify the
source of the 1854 cholera epidemic in London

cisc3415-fall2011-parsons-lect06 17

• They were also famously used by John Snow to identify the
source of the 1854 cholera epidemic in London

cisc3415-fall2011-parsons-lect06 18

Cell-based maps

• Last time we saw a variety of different cell-based maps.

• Exact cell decomposition

cisc3415-fall2011-parsons-lect06 19

• Fixed cell decomposition

cisc3415-fall2011-parsons-lect06 20

• Adaptive cell decomposition.

cisc3415-fall2011-parsons-lect06 21

• Given the maps, we still want to figure out a sequence of line
segments.

• Not quite so straightforward for cell-based maps.

•We will look at two general approaches to do path-finding:

– Explicit search of a connectivity graph.
– Wavefront planning

• These are really the same thing in different guises.

cisc3415-fall2011-parsons-lect06 22

Connectivity graph
• Identify which cells are next to which other cells.

cisc3415-fall2011-parsons-lect06 23

• The question is how to figure out a path from the graph.

•When the graph is complex, we need to use search techniques.

• This is also the case for the connectivity graphs we get
automatically from the visibility graph or Voronoi diagram
approaches.

• Standard approaches to search:

– Breath first
– Depth first
– A*

• Plus there are robotics-specific approaches like D*.

cisc3415-fall2011-parsons-lect06 24

Search

• A general algorithm for search is:

agenda = initial node;
while agenda not empty do{

state <- node from agenda;
new nodes = nodes connected to state;
if goal in new nodes
then {

return solution;
}

add new nodes to agenda;
}

• Note that this doesn’t generate a set of waypoints, it just looks
for the goal state.

cisc3415-fall2011-parsons-lect06 25

• Let’s think about how this would work on the connectivity
graph:

cisc3415-fall2011-parsons-lect06 26

• To use the algorithm we need to decide how to do the selection in

state <- node from agenda;

and how to do the addition in:

add new nodes to agenda;

• Depth-first search:

– Takes the first node on the agenda;
– Adds new nodes to the front of the agenda.

• Leads to a search that explores “vertically”.

cisc3415-fall2011-parsons-lect06 27

• Breadth-first search

– Takes the first node on the agenda;
– Adds new nodes to the back of the agenda.

• Explores all the nodes at one “level” before looking at the next
level.

cisc3415-fall2011-parsons-lect06 28

• A* search focuses the search by giving each node a pair of
weights:

– How far it is from the start; and
– How close it is to the goal.

• The cost of the node is then the sum of the weights.

•We pick from the agenda by choosing the node with the lowest
cost.
(Choosing like this means we don’t have to worry about what
order we put nodes onto the agenda).

cisc3415-fall2011-parsons-lect06 29

• In some domains we have to design clever functions to
determine what “far” is.

• In robotics we can just use Euclidean or Manhattan distance
between points:

– Euclidean distance

de
s,g =

√
(xg − xs)2 + (yg − ys)2

– Manhattan distance

dm
s,g = |(xg − xs)| + |(yg − ys)|

• Of course the distance to t he goal may be an underestimate
(may be no route through), but it turns out that this is a good
thing for A*.

cisc3415-fall2011-parsons-lect06 30

• Often in robotics we need to replan

• D* is a version of A* that keeps track of the search that led to a
plan and just fixes the bits that need to be fixed.

• Quicker than replanning from scratch.

– Usually have to replan from the robot to the goal and the only
change is near the robot.

– That is where the robot senses failure.

cisc3415-fall2011-parsons-lect06 31

• In all these approaches we have to extract the waypoints after we
find the goal.

• First we identify the sequence of cells.

– As we search we can build a plan for each node we visit.
– The plan for each node is the route to its parent plus the step

to the node.
– When we get to the goal we have the plan.

• Then we build a waypoint from each grid cell.

– Typically the center of gravity of the cell.

cisc3415-fall2011-parsons-lect06 32

Wavefront planning

• Also known as Grassfire, wildfire or NF1.

• Essentially breadfirst search in a convenient form for application
to grid-based maps.

•Works like this:

1. Start at the cell containing the goal and label it 0.
2. Take every unlabelled cell that is next to a cell labelled n and

label it n + 1.
3. Repeat until the cell containing the start is labelled.

• Then read the sequence of cells to traverse by following the
labels down from the start.

cisc3415-fall2011-parsons-lect06 33

• Here’s an example:

cisc3415-fall2011-parsons-lect06 34

•Works especially well with occupancy grids, where the obstacles
are already factored into the map.

cisc3415-fall2011-parsons-lect06 35

Bug algorithms

• The bug algorithms assume localization but no map.

• Here we see the first such algorithm, bug 1, working.

cisc3415-fall2011-parsons-lect06 36

•When you meet an obstacle you follow around the edge.

• Leave the obstacle at the point closest to the goal.

• Circle the obstacle to be sure that you know where this point is.

cisc3415-fall2011-parsons-lect06 37

• Here’s the second bug algorithm in action.

• Improves on the performance of bug 1

cisc3415-fall2011-parsons-lect06 38

• Follow the obstacle always on the left or right side.

• Leave the obstacle if you cross the direct (line of sight)
connection between start and goal.

cisc3415-fall2011-parsons-lect06 39

Works even on very complex
obstacles

cisc3415-fall2011-parsons-lect06 40

Potential field

• Robot is treated as a point under the influence of an artificial
potential field.

• The goal attracts it and obstacles repel it.

cisc3415-fall2011-parsons-lect06 41

• Generated robot movement is similar to a ball rolling down the
hill

• Lots of possibilities to get stuck in local minima.

cisc3415-fall2011-parsons-lect06 42

Vector field histogram

• Approach that uses sensor readings to tell the robot how to
avoid obstacles.

• Representing the area around the robot as a grid, compute the
probability that any square has an obstacle.

• Provides a local map to decide how the robot should move.

cisc3415-fall2011-parsons-lect06 43

• The local map is reduced to a 1 DOF histogram:

• Then compute the steering angle for the best gap.

• Best selected using function G which combines:

G = a. target-direction + b. wheel-orientation
+ c. previous-direction

cisc3415-fall2011-parsons-lect06 44

VFH+

• An issue with VFH is that it doesn’t take account of how the
robot can really move.

• The best gap could be one that the robot has to stop and do some
complex maneuver to go through.

cisc3415-fall2011-parsons-lect06 45

• VFH+ considers motion
on trajectories.
• Any turn that has a

trajectory that intersects
an obstacle is blocked

cisc3415-fall2011-parsons-lect06 46

• VFH in action.

cisc3415-fall2011-parsons-lect06 47

• VFH and VFH+ are limited if narrow areas (e.g. doors) have to
be traversed.

• Local minima might not be avoided.

• Reaching the goal can not be guaranteed.

• Dynamics of the robot not really considered.

cisc3415-fall2011-parsons-lect06 48

Curvature velocity methods

• Go further than VFH+ in modelling the motion of the robot.

• Transform obstacles into the velocity space of the robot.

• Apply acceleration constraints to determine possible velocities.

cisc3415-fall2011-parsons-lect06 49

Summary

• In this final lecture we looked at issues to do with navigation.

– Global navigation is about finding a path.
– Local navigation is about avoiding obstacles.

•We looked at several examples of both.

• In the final labs we will look at path-planning, building on the
path following code you have already written.

cisc3415-fall2011-parsons-lect06 50

