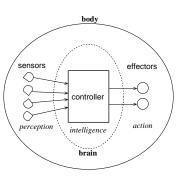
INTRODUCTION TO ROBOTICS

- What is an agent?
 - "anything that can be viewed as perceiving its environment through sensors and acting upon that environment through effectors." [Russell&Norvig, p32]
- What is autonomy?
 - no remote control!!
 - an agent makes decisions on its own, guided by feedback from its sensors; but you write the program that tells the agent how to make its decisions environment.

Autonomous agents and Autonomous robotics

- We will be discussing autonomous mobile robots
- What is a robot?
 - "a programmable, multifunction manipulator designed to move material, parts, tools or specific devices through variable programmed motions for the performance of various tasks." [Robot Institute of America]
 - "an active, artificial *agent* whose environment is the physical world" [Russell&Norvig, p773]


cis716.5-fall2003-parsons-lect02

Our definition of a *robot*

- robot = autonomous embodied agent
- has a *body* and a *brain*
- exists in the physical world (rather than the virtual or simulated world)
- is a mechanical device
- contains *sensors* to perceive its own state
- contains sensors to perceive its surrounding environment
- \bullet possesses $\it effectors$ which perform actions
- has a *controller* which takes input from the sensors, makes *intelligent* decisions about actions to take, and effects those actions by sending commands to motors

cis716.5-fall2003-parsons-lect02

Our canonical agent

cis716.5-fall2003-parsons-lect02

- Foremost author: Isaac Asimov, "I, Robot" (1950)
- The *Three Laws of Robotics*
 - 1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
 - 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
 - 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.
- Hollywood broke these rules: e.g., "The Terminator" (1984)
- Also see Iain Banks "Culture" novels for an intersting exploration on how we might interact with intelligent machines.

A bit of robot history

- The word *robot* came from the Czech word *robota*, which means *slave*
- Used first by playwrite Karel Capek, "Rossum's Universal Robots" (1923)
- Human-like automated devices date as far back as ancient Greece
- Modern view of a robot stems from science fiction literature

cis716.5-fall2003-parsons-lect02

Effectors

- Comprise all the mechanisms through which a robot can *effect* changes on itself or its environment
- Actuator = the actual mechanism that enables the effector to execute an action; converts software commands into physical motion
- Types:
 - arm
 - leg
 - wheel
 - gripper
- Categories:
 - manipulator
 - mobile

cis716.5-fall2003-parsons-lect02

Some manipulator robots

some manipulator robots

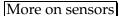
cis716.5-fall2003-parsons-lect02

Degrees of freedom

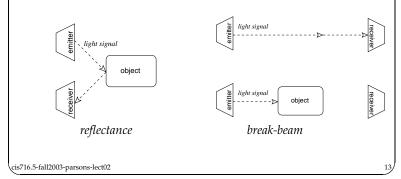
- Number of directions in which robot motion can be controlled
- Free body in space has 6 degrees of freedom:
 - three for position (x, y, z)
 - three for orientation (roll, pitch, yaw)
 - * yaw refers to the direction in which the body is facing i.e., its orientation within the xy plane
 - * roll refers to whether the body is upside-down or not i.e., its orientation within the yz plane
 - * *pitch* refers to whether the body is tilted i.e., its orientation within the *xz* plane
- If there is an actuator for every degree of freedom, then all degrees of freedom are controllable ⇒ *holonomic*
- Most robots are *non-holonomic*

Mobile robots

- Classified by manner of locomotion:
 - wheeled
 - legged
- Stability is important
 - static stability
 - dynamic stability



cis716.5-fall2003-parsons-lect02


Sensors

- ⇒ Perception
 - Proprioceptive: know where your joints/sensors are
 - Odometry: know where you are
- Function: to convert a physical property into an electronic signal which can be interpreted by the robot in a useful way

Property being sensed	type of sensor
contact	bump, switch
distance	ultrasound, radar, infra red (IR)
light level	photo cell, camera
sound level	microphone
temperature	thermal
rotation	encoder

- Operation
 - Passive: read a property of the environment
 - Active: act on the environment and read the result

Environment

- Accessible vs inaccessible
 - robot has access to all necessary information required to make an informed decision about to do next
- Deterministic vs nondeterministic
 - any action that a robot undertakes has only one possible outcome.
- Episodic vs non-episodic
 - the world proceeds as a series of repeated episodes.

More on sensors

- noise
 - *internal*: from inside the robot
 - *external*: from the robot's environment
 - calibration: can help eliminate/reduce noise

cis716.5-fall2003-parsons-lect02

Environment

- Static vs dynamic
 - the world changes by itself, not only due to actions effected by the robot
- Discrete vs continuous
 - sensor readings and actions have a discrete set of values.

cis716.5-fall2003-parsons-lect02

State

- Knowledge about oneself and one's environment
 - Kinematics = study of correspondance between actuator mechanisms and resulting motion
 - * motion:
 - ·rotary
 - · linear
 - Combines sensing and acting
 - Did I go as far as I think I went?
- But one's environment is full of information
- For an agent, what is relevant?

cis716.5-fall2003-parsons-lect02

Autonomy

- To be truly autonomous, it is not enough for a system simply to establish direct numerical relations between sensor inputs and effector outputs
- A system must be able to accomplish *goals*
- A system must be able to *solve problems*
- $\bullet \Rightarrow \mbox{Need to represent problem space}$
 - which contains goals
 - and intermediate states
- \bullet There is always a trade-off between $\emph{generality}$ and $\emph{efficiency}$
 - more specialized \Rightarrow more efficient
 - more generalized \Rightarrow less efficient

Control

- Autonomy
- Problem solving
- Modeling
 - knowledge
 - representation
- Control architectures
- Deliberative control
- Reactive control
- Hybrid control

cis716.5-fall2003-parsons-lect02

Problem solving: example

- GPS = General Problem Solver [Newell and Simon 1963]
- Means-Ends analysis

operator	preconditions	results
PUSH(obj, loc)	$at(robot, obj) \land large(obj) \land$	$at(obj, loc) \land$
	$clear(obj) \land armempty()$	at(robot, loc)
$\overline{CARRY(obj,loc)}$	$at(robot, obj) \land small(obj)$	$at(obj, loc) \land$
		at(robot, loc)
WALK(loc)	none	at(robot, loc)
$\overline{PICKUP(obj)}$	at(robot, obj)	holding(obj)
$\overline{PUTDOWN(obj)}$	holding(obj)	$\neg holding(obj)$
$\overline{PLACE(obj1,obj2)}$	$at(robot, obj2) \land holding(obj1)$	on(obj1, obj2)

cis716.5-fall2003-parsons-lect02

cis716.5-fall2003-parsons-lect02

2

Modeling the robot's environment

- Modeling
 - the way in which domain knowledge is embedded into a control system
 - information about the environment stored internally: internal representation
 - e.g., maze: robot stores a *map* of the maze "in its head"

cis716.5-fall2003-parsons-lect02

21

Memory

- Divided into 2 categories according to duration
- Short term memory (STM)
 - transitory
 - used as a buffer to store only recent sensory data
 - data used by only one behaviour
 - examples:
 - * avoid-past: avoid recently visited places to encourage exploration of novel areas
 - * wall-memory: store past sensor readings to increase correctness of wall detection

• Knowledge

- information in a context
- organized so it can be readily applied
- understanding, awareness or familiarity acquired through learning or experience
- physical structures which have correlations with aspects of the environment and thus have a predictive power for the system

cis716.5-fall2003-parsons-lect02

Memory

- Long term memory (LTM)
 - persistent
 - metric maps: use absolute measurements and coordinate systems
 - *qualitative maps*: use landmarks and their relationships
 - examples:
 - * *Markov models*: graph representation which can be augmented with probabilities for each action associated with each sensed state

cis716.5-fall2003-parsons-lect02 23/ cis716.5-fall2003-parsons-lect02

2

Knowledge representation

- Must have a relationship to the environment (temporal, spatial)
- Must enable predictive power (look-ahead), but if inaccurate, it can deceive the system
- Explicit: symbolic, discrete, manipulable
- *Implicit*: embedded within the system
- *Symbolic*: connecting the meaning (semantics) of an arbitrary symbol to the real world
- Difficult because:
 - sensors provide signals, not symbols
 - symbols are often defined with other symbols (circular, recursive)
 - requires interaction with the world, which is noisy

cis716.5-fall2003-parsons-lect02

Components of knowledge representation

- Actions: outcomes of specific actions on the self and the environment
- *Self/ego*: stored proprioception (sensing internal state), self-limitations, capabilities
 - perceptive: how to sense
 - behaviour: how to act
- Intentional: goals, intended actions, plans
- *Symbolic*: abstract encoding of state/information

Components of knowledge representation

- State
 - totally vs partially vs un- observable
 - discrete vs continuous
 - static vs dynamic
- *Spatial*: navigable surroundings and their structure; metric or topological maps
- Objects: categories and/or instances of detectable things in the world

cis716.5-fall2003-parsons-lect02

Types of representations

- maps
 - Euclidean map
 - * represents each point in space according to its metric distance to all other points in the space
 - Topological map
 - * represents locations and their connections, i.e., how/if they can be reached from one another; but does not contain exact metrics
 - Cognitive map
 - * represents behaviours; can store both previous experience and use for action
 - * used by animals that forage and home (animal navigation)
 - * may be simple collections of vectors

cis716.5-fall2003-parsons-lect02

cis716.5-fall2003-parsons-lect02

2

Control architecture

- A control architecture provides a set of principles for organizing a control system
- Provides structure
- Provides constraints
- Refers to software control level, not hardware!
- Implemented in a programming language
- Don't confuse "programming language" with "robot architecture"
- Architecture guides how programs are structured

cis716.5-fall2003-parsons-lect02

Deliberative control

- Classical control architecture (first to be tried)
- First used in AI to reason about actions in non-physical domains (like chess)
- Natural to use this in robotics at first
- Example: Shakey (1960's, SRI)
 - state-of-the-art machine vision used to process visual information
 - used classical planner (STRIPS)

Classes of robot control architectures

- *Deliberative*
 - look-ahead; think, plan, then act
- Reactive
 - don't think, don't look ahead, just react!
- Hybrid
 - think but still act quickly
- Behaviour-based
 - distribute thinking over acting

cis716.5-fall2003-parsons-lect02

- Planner-based architecture
 - 1. sensing (S)
 - 2. planning (P)
 - 3. acting (A)
- Requirements
 - lots of time to think
 - lots of memory
 - (but the environment changes while the controller thinks)

cis716.5-fall2003-parsons-lect02

31/

Reactive control

- Operate on a short time scale
- Does not look ahead
- Based on a tight loop connecting the robot's sensors with its effectors
- Purely reactive controllers do not use any internal representation; they merely react to the current sensory information
- Collection of rules that map situations to actions
 - simplest form: divide the perceptual world into a set of mutually exclusive situations recognize which situation we are in and react to it
 - (but this is hard to do!)

cis716.5-fall2003-parsons-lect02

Hybrid control

- Use the best of both worlds (deliberative and reactive)
- Combine open-loop and closed-loop execution
- Combine different time scales and representations
- Typically consists of three layers:
 - 1. reactive layer
 - 2. planner (deliberative layer)
 - 3. integration layer to combine them
 - 4. (but this is hard to do!)