
BEHAVIOUR-BASED ROBOTICS

Overview

� Control

� Behaviour-based systems

� Expressing behaviours

� Behavioural encoding

� Representations

� Behaviour coordination

� Emergent behaviour

cis716.5-fall2003-parsons-lect03 2

Control: models

� We like to make a distinction between:

– Classic “model-based” AI

� symbolic representations
– Neo “behaviour-based” AI

� numeric representations

� Classic models are “good old-fashioned AI”, in the tradition of
McCarthy.

� Behaviour-based models are “nouvelle AI” in the tradition of
Brooks.

� (There are also hybrid models that combine aspects of both
model-based and behaviour-based, but we have no time to cover
them in detail here.)

cis716.5-fall2003-parsons-lect03 3

Control: classic models

� Deliberative... sense, plan, act

– functional decomposition
– systems consist of sequential modules achieving independent

functions

� sense world

� generate plan

� translate plan into actions

� Reactive architectures

– task-oriented decomposition
– systems consist of concurrently executed modules achieving

specific tasks

� avoid obstacle

� follow wall

cis716.5-fall2003-parsons-lect03 4

Control: two orthogonal flows

motorsensor

sensor/motor
control

world model

planning

sensor/motor
control

world model

planning

sensor motor

cis716.5-fall2003-parsons-lect03 5

Control: behaviour based systems

� Behaviours are the underlying module of the system

� Behavioural decomposition

– rather than a functional or a task-oriented decomposition

� Systems consist of sequential modules achieving independent
functions

� Natural fit to robotic behaviour

– generate a motor response from a given perceptual stimulus
– basis in biological studies
– biology is an inspiration for design

� Abstract representation is avoided

cis716.5-fall2003-parsons-lect03 6

Behaviour based systems: behaviour vs action

Behaviour is:

� based on dynamic processes

– operating in parallel
– lack of central control
– fast couplings between sensors and motors

� exploiting emergence

– side-effects from combined processes
– using properties of the environment

� reactive

cis716.5-fall2003-parsons-lect03 7

Behaviour-based systems: behaviour vs action

Action is:

� discrete in time

– well defined start and end points
– allows pre- and post-conditions

� avoidance of side-effects

– only one (or a few) actions at a time
– conflicts are undesired and avoided

� deliberative

Actions are building blocks for behaviours.

cis716.5-fall2003-parsons-lect03 8

Behaviour-based systems: properties

� Achieve specific tasks/goals

– avoid others, find friend, go home

� Typically execute concurrently

� Can store state and be used to construct world
models/representations

� Can directly connect sensors to effectors

� Can take inputs from other behaviours and send outputs to
other behaviours

– connection in networks

� Typically higher-level than actions (go home, not turn left 45
degrees)

cis716.5-fall2003-parsons-lect03 9

Behaviour-based systems: key properties

� Ability to act in real time

� Ability to use representations to generate efficient (not only
reactive) behaviour

� Ability to use a uniform structure and representation throughout
the system (so no intermediate layer)

cis716.5-fall2003-parsons-lect03 10

Behaviour-based systems: challenges

� How can representation be effectively distributed over the
behaviour structure?

– time scale must be similar to that of real-time components of
the system

– representation must use same underlying behaviour structure
for all components of the system

� Some components may be reactive

� Not every component is involved with representational
computation

� Some systems use a simple representation

� As long as the basis is in behaviours and not rules, the system is
a BBS

cis716.5-fall2003-parsons-lect03 11

Behaviour-based systems: what are behaviours?

� Behaviour: anything observable that the system/robot does

– how do we distinguish internal behaviours (components of a
BBS) and externally observable behaviours?

– should we distinguish?

� Reactive robots display desired external behaviours

– avoiding
– collecting cans
– walking

� But controller consists of a collection of rules, possibly in layers

� BBS actually consist and are programmed in the behaviours,
which are higher granularity, extended in time, capable of
representation

cis716.5-fall2003-parsons-lect03 12

Behaviour-based systems: expressing behaviours

� Behaviours can be expressed with various representations

� When a control system is being designed, the task is broken
down into desired external behaviours

� Those can be expressed with

– Functional notation
– Stimulus response (SR) diagrams
– Finite state machines/automata (FSA)
– Schema

cis716.5-fall2003-parsons-lect03 13

Expressing behaviours: functional notation

� Mathematical model – represented as triples � � ��� �� �

� = stimulus

� = range of response

� = behavioural mapping between � and�

� Easily convert to functional languages like LISP

coordinate-behaviours [
move-to-classroom (detect-classroom-location),
avoid-objects (detect-objects),
dodge-students (detect-students),
stay-to-right-on-path (detect-path),
defer-to-elders (detect-elders)

] = motor-response

cis716.5-fall2003-parsons-lect03 14

Expressing behaviours: FSA diagrams

� States of the diagram can also be called behaviours, diagrams
show sequences of behaviour transitions

� Situated automata.

– formalism for specifying FSAs that are situated
– task described in high-level logic expressions, as a set of goals

and a set of operators that achieve (ach) and maintain (maint)
the goals

– once defined, tasks can be compiled into circuits (using
special purpose languages), which are reactive

cis716.5-fall2003-parsons-lect03 15

Expressing behaviours: FSA diagrams

� Example:

(defgoalr (ach in-classroom)
(if (not start-up)

(maint (and (maint move-to-classroom)
(maint avoid-objects)
(maint dodge-students)
(maint stay-to-right-on-path)
(maint defer-to-elders)))))

cis716.5-fall2003-parsons-lect03 16

Expressing behaviours: subsumption architecture

� Rodney Brooks, 1986, MIT AI lab

� Reactive elements

� Behaviour-based elements

� Layered approach based on levels of competence

� Augmented finite state machine:
reset

suppressioninhibition

behavior model
FSM OUTPUTINPUT

cis716.5-fall2003-parsons-lect03 17

Expressing behaviours: subsumption architecture

task layer

emergency
layer

motion layer

obstacles

stuck? reverse

collect

turn

forward

SE
N

SO
R

S

M
O

T
O

R
S

cis716.5-fall2003-parsons-lect03 18

Expressing behaviours: formally

� Behavioural response in physical space has a strength and an
orientation

� Expressed as � � ��� �� �

� � = stimulus, necessary but not sufficient condition to evoke a
response (�); internal state can also be used

� � = behavioural mapping categories

– null
– discrete
– continuous

cis716.5-fall2003-parsons-lect03 19

Expressing behaviours: behavioural mapping

� Discrete encoding

– expressed as a finite set of situation-response pairs/mappings
– mappings often include rule-based form IF-THEN
– examples:

� Gapps [Kaelbling & Rosenschein]

� subsumption language [Brooks]

� Continuous encoding

– instead of discretizing the input and output, a continuous
mathematical function describes the input-output mapping

– can be simple, time-varying, harmonic
– example: potential field

cis716.5-fall2003-parsons-lect03 20

Expressing behaviours: potential field

G

G

R

R

(a)

(c)

(e)

(d)

(b)

© 1998 Morgan Kaufmann Publishers

cis716.5-fall2003-parsons-lect03 21

Behavioural encoding: strengths and weaknesses

� Strengths

– support for parallelism
– run-time flexibility
– timeliness for development
– support for modularity

� Weaknesses

– niche targetability
– hardware retargetability
– combination pitfalls (local minima, oscillations)

cis716.5-fall2003-parsons-lect03 22

Behaviour coordination

� BBS consist of collection of behaviours

� Execution must be coordinated in a consistent fashion

� Coordination can be

– competitive
– cooperative
– combination of the two

� Deciding what to do next.

– action-selection problem
– behaviour-arbitration problem

cis716.5-fall2003-parsons-lect03 23

Behaviour coordination

� Competitive coordination.

– perform arbitration (selecting one behaviour among a set of
candidates)

� priority-based: subsumption

� state-based: discrete event systems

� function-based: spreading of activation action selection

� Cooperative coordination.

– perform command fusion (combine outputs of multiple
behaviours)

– voting
– fuzzy (formalized voting)
– superposition (linear combinations) i.e. potential fields.

cis716.5-fall2003-parsons-lect03 24

Emergent behaviour: what is it?

� Important but not well-understood phenomenon

� Robot behaviours “emerge” from

– interactions of rules
– interactions of behaviours
– interactions of either with environment

� Coded behaviour

– in the programming scheme

� Observed behaviour

– in the eyes of the observer
– emergence

� There is no one-to-one mapping between the two!

cis716.5-fall2003-parsons-lect03 25

Emergent behaviour: how does it arise?

� Is it magic?

– sum is greater than the parts
– emergent behaviour is more than the controller that produces

it

� Interaction and emergence.

– interactions between rules, behaviours and environment
– source of expressive power for a designer
– systems can be designed to take advantage of emergent

behaviour

cis716.5-fall2003-parsons-lect03 26

Emergent behaviour: an example

� Emergent flocking.

� Program multiple robots:

– don’t run into any other robot
– don’t get too far from other robots
– keep moving if you can

� When run in parallel on many robots, the result is flocking

cis716.5-fall2003-parsons-lect03 27

Emergent behaviour: wall following

forward motion, obstacle avoidance

coded behavior

with slight right turn

observed behavior

wall following

cis716.5-fall2003-parsons-lect03 28

Emergent behaviour: wall following

� Can also be implemented with these rules:

– if too far, move closer
– if too close, move away
– otherwise, keep on

� Over time, in an environment with walls, this will result in
wall-following

� Is this emergent behaviour?

� It is argued yes because

– robot itself is not aware of a wall, it only reacts to distance
readings

– concepts of “wall” and “following” are not stored in the
robot’s controller

cis716.5-fall2003-parsons-lect03 29

Emergent behaviour: conditions on emergence

� Notion of emergence depends on two aspects:

– existence of an external observer, to observe and describe the
behaviour of the system

– access to the internals of the controller itself, to verify that the
behaviour is not explicitly specified anywhere in the system

cis716.5-fall2003-parsons-lect03 30

Emergent behaviour: conditions on emergence

� Unexpected vs emergent.

– some researchers say the above is not enough for behaviour to
be emergent, because above is programmed into the system
and the “emergence” is a matter of semantics

– so emergence must imply something unexpected, something
“surreptitiously discovered” by observing the system.

– “unexpected” is highly subjective, because it depends on
what the observer was expecting

– naı̈ve observers are often surprised!
– informed observers are rarely surprised

� Once a behaviour is observed, it is no longer unexpected

� Is new behaviour then “predictable”?

cis716.5-fall2003-parsons-lect03 31

