
' $

PLANNING II

& %

' $

Partial Order Planning

� The answer to the problem we ended the last lecture with is to
use partial order planning.� Basically this gives us a way of checking before adding an action
to the plan that it doesn’t mess up the rest of the plan.� The problem is that in this recursive process, we don’t know
what the rest of the plan is.� Need a new representation partially ordered plans.

cis716-fall2003-parsons-lect12 2& %

' $

Representation

StartStartStart

Total Order Plans: Partial Order Plan:

Start

Left

Sock

Left

Shoe

Sock

Right

Shoe

Right

Finish

Start

Finish

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Start

Left

Sock

Shoe

Right

Finish

Right

Sock

Left

Shoe

Finish

Sock
Left

Right

Sock

Shoe
Left

Right

Shoe

Shoe

Right

Finish

Sock

Right

Left

Sock

Left

Shoe

Finish

Sock
Right

Shoe
Left

Left

Sock

Right

Shoe

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

cis716-fall2003-parsons-lect12 3& %

' $

Partially ordered plans

� Partially ordered collection of steps with

– Start step has the initial state description as its effect

– Finish step has the goal description as its precondition

– causal links from outcome of one step to precondition of
another

– temporal ordering between pairs of steps� Open condition = precondition of a step not yet causally linked� A plan is complete iff every precondition is achieved� A precondition is achieved iff it is the effect of an earlier step and
no possibly intervening step undoes it

cis716-fall2003-parsons-lect12 4& %

' $

Plan construction

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

cis716-fall2003-parsons-lect12 5& %

' $

Plan construction (2)

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

cis716-fall2003-parsons-lect12 6& %

' $

Plan construction (3)

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

cis716-fall2003-parsons-lect12 7& %

' $

Planning process

� Operators on partial plans:

– add a link from an existing action to an open condition

– add a step to fulfill an open condition

– order one step wrt another to remove possible conflicts� Gradually move from incomplete/vague plans to complete,
correct plans� Backtrack if an open condition is unachievable or if a conflict is
unresolvable

cis716-fall2003-parsons-lect12 8& %

' $

POP algorithm

function POP(initial, goal, operators) returns plan

plan MAKE-MINIMAL-PLAN(initial, goal)
loop do

if SOLUTION?(plan) then return planSneed;
 SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators,Sneed, c)
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns Sneed;

pick a plan step Sneed from STEPS(plan)

with a precondition
 that has not been achieved
return Sneed;

cis716-fall2003-parsons-lect12 9& %

' $

procedure CHOOSE-OPERATOR(plan, operators,Sneed, c)

choose a step Sadd from operators or STEPS(plan) that has
 as
an effect

if there is no such step then fail

add the causal link Sadd
�! Sneed to LINKS(plan)
add the ordering constraint Sadd � Sneed to ORDERINGS(plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS(plan)
add Start � Sadd � Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si
�! Sj in LINKS(plan)
do

choose either
Demotion: Add Sthreat� Si to ORDERINGS(plan)
Promotion: Add Sj � Sthreat to ORDERINGS(plan)

if not CONSISTENT(plan) then fail

end

cis716-fall2003-parsons-lect12 10& %

' $

Clobbering� A clobberer is a potentially intervening step that destroys the
condition achieved by a causal link. E.g., Go(Home) clobbersAt(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)
cis716-fall2003-parsons-lect12 11& %

' $

Properties of POP� Nondeterministic algorithm: backtracks at choice points on
failure:

– choice of Sadd to achieve Sneed
– choice of demotion or promotion for clobberer

– selection of Sneed is irrevocable� POP is sound, complete, and systematic (no repetition)� Extensions for disjunction, universals, negation, conditionals� Can be made efficient with good heuristics derived from
problem description� Particularly good for problems with many loosely related
subgoals

cis716-fall2003-parsons-lect12 12& %

' $

Example

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

cis716-fall2003-parsons-lect12 13& %

' $

Example (2)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

cis716-fall2003-parsons-lect12 14& %

' $

Example (3)

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

cis716-fall2003-parsons-lect12 15& %

' $

Example (4)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

cis716-fall2003-parsons-lect12 16& %

' $

Example (5)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

cis716-fall2003-parsons-lect12 17& %

' $

Summary

� This lecture has looked at a more advanced approach to
planning.

– Partial order planning� This requires a new way of looking at the world, but the payoff
is a more robust approach.� We also looked at the POP algorithm, . . .� . . . and saw how it could solve the Sussman anomaly.

cis716-fall2003-parsons-lect12 18& %

