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Partial Order Planning

� The answer to the problem we ended the last lecture with is to
use partial order planning.� Basically this gives us a way of checking before adding an action
to the plan that it doesn’t mess up the rest of the plan.� The problem is that in this recursive process, we don’t know
what the rest of the plan is.� Need a new representation partially ordered plans.
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Representation
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Partially ordered plans

� Partially ordered collection of steps with

– Start step has the initial state description as its effect

– Finish step has the goal description as its precondition

– causal links from outcome of one step to precondition of
another

– temporal ordering between pairs of steps� Open condition = precondition of a step not yet causally linked� A plan is complete iff every precondition is achieved� A precondition is achieved iff it is the effect of an earlier step and
no possibly intervening step undoes it
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Plan construction
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Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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Plan construction (2)
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Plan construction (3)
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Planning process

� Operators on partial plans:

– add a link from an existing action to an open condition

– add a step to fulfill an open condition

– order one step wrt another to remove possible conflicts� Gradually move from incomplete/vague plans to complete,
correct plans� Backtrack if an open condition is unachievable or if a conflict is
unresolvable
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POP algorithm

function POP(initial, goal, operators) returns plan

plan MAKE-MINIMAL-PLAN(initial, goal)
loop do

if SOLUTION?( plan) then return planSneed; 
 SELECT-SUBGOAL( plan)
CHOOSE-OPERATOR( plan, operators,Sneed, c)
RESOLVE-THREATS( plan)

end

function SELECT-SUBGOAL( plan) returns Sneed; 

pick a plan step Sneed from STEPS( plan)

with a precondition 
 that has not been achieved
return Sneed; 
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procedure CHOOSE-OPERATOR(plan, operators,Sneed, c)

choose a step Sadd from operators or STEPS( plan) that has 
 as
an effect

if there is no such step then fail

add the causal link Sadd 
�! Sneed to LINKS( plan)
add the ordering constraint Sadd � Sneed to ORDERINGS( plan)
if Sadd is a newly added step from operators then

add Sadd to STEPS( plan)
add Start � Sadd � Finish to ORDERINGS( plan)

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si 
�! Sj in LINKS( plan)
do

choose either
Demotion: Add Sthreat� Si to ORDERINGS( plan)
Promotion: Add Sj � Sthreat to ORDERINGS( plan)

if not CONSISTENT( plan) then fail

end
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Clobbering� A clobberer is a potentially intervening step that destroys the
condition achieved by a causal link. E.g., Go(Home) clobbersAt(Supermarket):
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Go(Supermarket)
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Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)
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Properties of POP� Nondeterministic algorithm: backtracks at choice points on
failure:

– choice of Sadd to achieve Sneed
– choice of demotion or promotion for clobberer

– selection of Sneed is irrevocable� POP is sound, complete, and systematic (no repetition)� Extensions for disjunction, universals, negation, conditionals� Can be made efficient with good heuristics derived from
problem description� Particularly good for problems with many loosely related
subgoals
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Example

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y) 
   Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem
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Example (2)
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On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)
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Example (3)
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On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)
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Example (4)
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On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)
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Example (5)
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On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)
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Summary

� This lecture has looked at a more advanced approach to
planning.

– Partial order planning� This requires a new way of looking at the world, but the payoff
is a more robust approach.� We also looked at the POP algorithm, . . .� . . . and saw how it could solve the Sussman anomaly.
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