
' $

LEARNING

& %

' $

Overview

� Most of the time we can’t program our agents to do everything
right to begin with.� We don’t have enough information about the environment.� So we get them to learn what to do.� Different forms of learning:

– Inductive learning; and

– Reinforcement learning.

cis716-fall2003-parsons-lect16 2& %

' $

Learning agents

Performance standard

Agent

E
nvironm

ent
Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

cis716-fall2003-parsons-lect16 3& %

' $

� Design of learning element is dictated by

– what type of performance element is used

– which functional component is to be learned

– how that functional compoent is represented

– what kind of feedback is available� Supervised learning: correct answers for each instance.� Reinforcement learning: occasional rewards.

cis716-fall2003-parsons-lect16 4& %

' $

� Example scenarios:

Performance element

Alpha−beta search

Logical agent

Simple reflex agent

Component

Eval. fn.

Transition model

Transition model

Representation

Weighted linear function

Successor−state axioms

Neural net

Dynamic Bayes netUtility−based agent

Percept−action fn

Feedback

Outcome

Outcome

Win/loss

Correct action

cis716-fall2003-parsons-lect16 5& %

' $

Inductive learning

� Simplest form: learn a function from examples (tabula rasa)� f is the target function� An example is a pair x, f(x):O O XXX ; +1

� Problem: find a(n) hypothesis h such thath � f
given a training set of examples

cis716-fall2003-parsons-lect16 6& %

' $

Inductive learning method� Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

cis716-fall2003-parsons-lect16 7& %

' $

Inductive learning method II� Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

cis716-fall2003-parsons-lect16 8& %

' $

Inductive learning method III� Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

cis716-fall2003-parsons-lect16 9& %

' $

Inductive learning method IV� Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

cis716-fall2003-parsons-lect16 10& %

' $

Inductive learning method V

x

f(x)

� Ockham’s razor: maximize a combination of consistency and
simplicity

cis716-fall2003-parsons-lect16 11& %

' $

Attribute-based representations

Ex Attributes TargetAlt Bar Fri Hun Pat Pri
e Rain Res Type Est WillWaitX1 T F F T Some $$$ F T French 0–10 TX2 T F F T Full $ F F Thai 30–60 FX3 F T F F Some $ F F Burger 0–10 TX4 T F T T Full $ F F Thai 10–30 TX5 T F T F Full $$$ F T French >60 FX6 F T F T Some $$ T T Italian 0–10 TX7 F T F F None $ T F Burger 0–10 FX8 F F F T Some $$ T T Thai 0–10 TX9 F T T F Full $ T F Burger >60 FX10 T T T T Full $$$ F T Italian 10–30 FX11 F F F F None $ F F Thai 0–10 FX12 T T T T Full $ F F Burger 30–60 T

cis716-fall2003-parsons-lect16 12& %

' $

Decision trees� Here is the “true” tree for deciding whether to wait:

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

cis716-fall2003-parsons-lect16 13& %

' $

Expressiveness� Decision trees can express any function of the input attributes.� For Boolean functions, truth table row ! path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T T

� Trivially, 9 a consistent decision tree for any training set with one
path to leaf for each example (unless f nondeterministic in x) but
it probably won’t generalize to new examples� Prefer to find more compact decision trees

cis716-fall2003-parsons-lect16 14& %

' $

Hypothesis spaces

� How many distinct decision trees with n Boolean attributes?

cis716-fall2003-parsons-lect16 15& %

' $

Hypothesis spaces II

� How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

cis716-fall2003-parsons-lect16 16& %

' $

Hypothesis spaces III

� How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows

cis716-fall2003-parsons-lect16 17& %

' $

Hypothesis spaces IV

� How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n
cis716-fall2003-parsons-lect16 18& %

' $

Hypothesis spaces V� How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n

6 Boolean attributes means 18,446,744,073,709,551,616 trees

cis716-fall2003-parsons-lect16 19& %

' $

Hypothesis spaces VI� How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n

6 Boolean attributes means 18,446,744,073,709,551,616 trees� How many purely conjunctive hypotheses (Hungry ^ :Rain)?

cis716-fall2003-parsons-lect16 20& %

' $

Hypothesis spaces VII� How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n

6 Boolean attributes means 18,446,744,073,709,551,616 trees� How many purely conjunctive hypotheses (Hungry ^ :Rain)?� Each attribute can be in (positive), in (negative), or out) 3n

distinct conjunctive hypotheses� More expressive hypothesis space

– increases chance that target function can be expressed

– increases number of hypotheses consistent with training set) may get worse predictions

cis716-fall2003-parsons-lect16 21& %

' $

Decision tree learning� Aim: find a small tree consistent with the training examples� Idea: (recursively) choose “most significant” attribute as root of
(sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else

best CHOOSE-ATTRIBUTE(attributes, examples)
tree a new decision tree with root test best
for each value vi of best do

examplesi felements of examples with best = vig
šubtree DTL(examplesi; attributes� best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree

cis716-fall2003-parsons-lect16 22& %

' $

Choosing an attribute

� Idea: a good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

� Patrons? is a better choice—gives information about the
classification

cis716-fall2003-parsons-lect16 23& %

' $

Information

� Information answers questions� The more clueless I am about the answer initially, the more
information is contained in the answer� Scale: 1 bit = answer to Boolean question with prior h0:5; 0:5i� Information in an answer when prior is hP1; : : : ; Pni isH(hP1; : : : ; Pni) = nXi=1�Pi log2Pi
(also called entropy of the prior)

cis716-fall2003-parsons-lect16 24& %

' $

Information II

� Suppose we have p positive and n negative examples at the root)H(hp=(p+n); n=(p+n)i) bits needed to classify a new example.� For 12 restaurant examples, p = n = 6 so we need 1 bit� An attribute splits the examples E into subsets Ei, each of which
(we hope) needs less information to complete the classification

cis716-fall2003-parsons-lect16 25& %

' $

Information III

� Let Ei have pi positive and ni negative examples) H(hpi=(pi + ni); ni=(pi + ni)i) bits needed to classify a new
example) expected number of bits per example over all branches isXi pi + nip + n H(hpi=(pi + ni); ni=(pi + ni)i)

� For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit) choose the attribute that minimizes the remaining
information needed

cis716-fall2003-parsons-lect16 26& %

' $

Back to the example� Decision tree learned from the 12 examples:

No Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T� Substantially simpler than “true” tree—a more complex
hypothesis isn’t justified by small amount of data

cis716-fall2003-parsons-lect16 27& %

' $

Performance measurement� How do we know that h � f?

1. Use theorems of computational/statistical learning theory

2. Try h on a new test set of examples

(use same distribution over example space as training set)� Learning curve = % correct on test set as a function of training set
size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set size

cis716-fall2003-parsons-lect16 28& %

' $

Performance measurement II� Learning curve depends on

– realizable (can express target function) vs. non-realizable
non-realizability can be due to missing attributes or restricted
hypothesis class

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

of examples

1

nonrealizable

redundant

realizable

cis716-fall2003-parsons-lect16 29& %

' $

Summary

� Learning needed for unknown environments, lazy designers� Learning agent = performance element + learning element� Learning method depends on type of performance element,
available feedback, type of component to be improved, and its
representation� For supervised learning, the aim is to find a simple hypothesis
approximately consistent with training examples� Decision tree learning using information gain� Learning performance = prediction accuracy measured on test
set

cis716-fall2003-parsons-lect16 30& %

